

Service instructions

Split air conditioner

Climate 2000

CL2000U W 26 E | CL2000U W 35 E | CL2000U W 53 E | CL2000U W 70 E | CL2000 26 E | CL2000 35 E | CL2000 53 E | CL2000 70 E

 Tal	ble of c	contents		7.1.1	CL2000 26 E, CL2000 35 E
_				7.1.2 7.1.3	CL2000 53 E
1	Explan	ation of symbols and safety instructions 3		7.1.3 7.2	Electrical Parts
	1.1	Explanation of symbols		7.3	Fan and fan motor
	1.2	General safety instructions		7.3 7.4	Sound blanket
	1.2.1	Overview		7.4 7.5	Four-way valve
	1.2.2	Refrigerant		7.5 7.6	Compressor
	1.2.3	Electricity		7.0	Compressor
2	Genera	al information on servicing4	8		sis and troubleshooting
				8.1	Error codes
3	Produc	ct Information 7		8.2	Parameter information inquiry by remote control $\ \ldots \ 39$
	3.1	Model Reference		8.3	Error diagnosis and troubleshooting without error
	3.2	Pipe Length and Drop Height7		8.3.1	code 41 Remote maintenance 41
	3.3	Dimensions8		8.3.2	Field maintenance
	3.4	Electrical Wiring Diagrams9		8.4	Check Procedures
	3.4.1	Indoor unit wiring diagram9		8.4.1	
	3.4.2	Outdoor unit wiring diagram			Before checking
	3.4.3	Outdoor unit main PCB ports		8.4.2	·
	3.4.4	Outdoor unit printed circuit board diagram		8.4.3	Compressor check
4	Produc	ct Features		8.4.4	IPM Continuity Check
7	4.1	Indoor unit display		8.4.5	
	4.1	Safety features		8.5	Troubleshooting by Error Code
	4.2	Operating functions		8.5.1	Indoor units mode conflict (only multi-split) 48
	4.3.1	Fan mode		8.5.2	EO/EH 00/EH 0A/F4/EC 51: Outdoor unit EEPROM parameter error or Compressor driven
	4.3.1	Cooling mode			chip EEPROM parameter error
	4.3.2			8.5.3	E1/EL 01: Indoor and outdoor unit
	4.3.4	Auto mode			communicationerror
	4.3.4	Heating mode		8.5.4	E2/EH 02: Zero crossing detection error 52
	4.3.6	Drying mode 18 Forced operation 18		8.5.5	E3/EH 03/F5/EC 07: The fan speed is operating
	4.3.7	Sleep mode		0.5.0	outside of normal range
	4.3.7	Auto-restart		8.5.6	E4/EH 60/E5/EH 61/F1/EC 53/F2/EC 52/F3/EC 54/F6/EC56: Open circuit or short circuit of
	4.3.9	Refrigerant leakage detection			outdoor temperature sensor
		8 °C Heating		8.5.7	E7/EH Ob: Indoor PCB/display board
		Self-cleaning			communication error
		Follow Me function		8.5.8	EC/EL OC: Refrigerant leakage detection 57
		Silence		8.5.9	FO/PC 08: Current overload protection
	4.3.13	Silence10		8.5.10	PO/PC 00: IPM malfunction or IGBT over-strong
5	Refrige	erant		0 = 11	current protection
	5.1	Recharge Refrigerant		8.5.11	P1/PC 01: Over voltage or too low voltage protection
	5.2	Evacuate Refrigerant for Re-Installation 19		8512	P2/PC 02: High temperature protection of IPM
	5.2.1	Indoor Unit		0.5.12	module or high pressure protection 62
	5.2.2	Outdoor Unit		8.5.13	P4/PC 04: Inverter compressor drive error 64
	5.3	Pressure on service port for refrigerants R32 21			PC 03: Low pressure protection 65
	5.3.1	Cooling chart for refrigerant R3221	_		
	5.3.2	Heating chart for refrigerant R3222	9		lix66
	5.3.3	System pressure table for refrigerant R3223		9.1	Temperature Sensor Resistance Value Table for T1,T2,T3 and T4
6	Indoor	Unit Disassembly24		9.2	Temperature Sensor Resistance Value Table for TP
	6.1	Front Panel			(T5)
	6.2	Electrical parts		9.3	Complain Record Form
	6.3	Evaporator	10	Environ	nmental protection and disposal 70
	6.4	Fan motor and fan			<u> </u>
	6.5	Step motors	11	Data Pr	otection Notice
7	Outdo	or Unit Disassembly29			
•		Panel plate 29			

1 Explanation of symbols and safety instructions

1.1 Explanation of symbols

Warnings

In warnings, signal words at the beginning of a warning are used to indicate the type and seriousness of the ensuing risk if measures for minimizing danger are not taken.

The following signal words are defined and can be used in this document:

DANGER

DANGER indicates that severe or life-threatening personal injury will

WARNING

WARNING indicates that severe to life-threatening personal injury may occur.

CAUTION

CAUTION indicates that minor to medium personal injury may occur.

NOTICE

NOTICE indicates that material damage may occur.

Important information

The info symbol indicates important information where there is no risk to people or property.

1.2 General safety instructions

1.2.1 Overview

This service manual is intended for service engineers. All instructions must be observed. Failure to comply with instructions may result in material damage and personal injury, including danger to life

- Read the installation manuals (outdoor unit, indoor unit, etc) prior to maintenance.
- ▶ Observe the safety instructions and warnings.
- ► Follow national and regional regulations, technical regulations and guidelines.

⚠ Warning

- Do not touch the refrigerant piping, water piping or internal parts during operations or when the operation has just been completed. This is because the temperature may be too high or too low. Let them recover to the normal temperature first. Wear protective gloves if you must come in contact with these.
- ▶ Do not touch any refrigerant that has accidentally leaked.

∧ Caution

- ► Please wear the appropriate personal protective tools during installation, maintenance or repair of the system (protective gloves, safety glasses, etc.).
- ▶ Do not touch the air inlet or aluminium fin of the unit.

⚠ Notice

Improper installation or connection of equipment and accessories may cause electric shocks, short circuits, leaks, fires, or other damage to the equipment. Use only accessories, equipment and spare parts made or approved by the manufacturer.

- ▶ Do not place any object or equipment on top of the unit.
- Do not sit, climb, or stand on the unit.

1.2.2 Refrigerant

⚠ Warning

- ➤ Take appropriate precautions to prevent refrigerant leakage. If the refrigerant gas leaks, ventilate the area immediately. Possible risk: An excessively high concentration of refrigerant in an enclosed area can lead to anoxia (oxygen deficiency). The refrigerant gas may produce a toxic gas if it comes in contact with fire.
- Refrigerant must be recovered. Do not release it to the environment.
 Use the vacuum pump to draw the refrigerant out from the unit.

∧ Notice

- ▶ Do not charge refrigerant before the wiring layout is completed.
- ► Only charge the refrigerant after the leak tests and vacuum drying have been completed.
- When charging the system with refrigerant, do not exceed the allowable charge.

1.2.3 Electricity

⚠ Notice

 All electrical works and repairs must be done by a certified installer or electrician.

⚠ Warning

- Make sure you switch off the power of the unit before you open the electric control box, and access any circuit wiring or components inside. At the same time, this prevents the unit from being accidentally powered up during installation or maintenance work.
- Once you open the cover of the electric control box, do not let any liquid spill into the box, and do not touch the components in the box with wet hands.
- ► Cut off power supply more then 5 minutes prior to access the electrical parts. Measure the voltage of the main circuit capacitor or electrical component terminals to make sure the voltage is less than 36 V before you touch any circuit component. Refer to the connections and wiring on the nameplate for the master circuit terminals and connections.
- Make sure the wiring ends are not subjected to any external force. Do not pull or squeeze the cables and wires. At the same time, make sure the wiring ends are not in contact with the piping or sharp edges of the sheet metal.
- Make sure all terminals of the components are firmly connected before you close the cover of the electric control box. Before you power on and start the unit, check that the cover of the electric control box is seated correctly and secured with screws.

2 General information on servicing

Always use appropriate tools only. In case of uncertainty, consult the manufacturer about the tools to use with flammable refrigerants.

DANGER

Fire hazard - Risk of injury or death

Using other parts than those specified by the manufacturer may result in the ignition of refrigerant from a leak.

 Always replace components with the parts specified by the manufacturer.

Preparing the work area

Prior to beginning any work on systems containing flammable refrigerants, safety checks are necessary to ensure that the risk of ignition is minimised. For repairs to the refrigerating system, the following precautions are to be complied with prior to conducting work on the system.

- Undertake any works in a controlled area and a controlled procedure to minimise the risk of flammable gases or vapours being present while performing the task.
- ► Remove all possible ignition sources and put up a "No Smoking" sign.
- Do not use a halide torch or any other gas detection method with an open flame.
- ▶ Do not work in a confined space.
- Section off the work area.
- Ensure the work area is well ventilated before and while carrying out the work.
- Check area with a suitable refrigerant/leak detector before and while carrying out the work. If a leak detector needs recalibration, recalibrate in a refrigerant-free area.
- ► Keep a dry powder or CO₂-filled fire extinguisher at hand.
- ► Inform maintenance staff and other persons working in the area of the work being carried out.

Checking the refrigeration equipment

The following checks are to be applied to installations using flammable refrigerants:

- ► Ensure the charge size is in accordance with the room size in which the refrigerant containing parts are installed.
- Check that the ventilation machinery and outlets are operating adequately and are not obstructed.
- ► If an indirect refrigerating circuit is used, the secondary circuits must be checked for the presence of refrigerant, too.
- Ensure all marking to the equipment is visible and legible. Any unintelligible signage must be corrected.
- Ensure only refrigerant pipes and components constructed from materials inherently resistant to being corroded, or which are suitably protected, are exposed. All others must be installed in a position where they are unlikely to be exposed to any corrosive substances.

Checking electrical devices and cabling

Electrical components must be fit for the purpose and correspond to the correct specification. The manufacturer's maintenance and service guidelines must be followed at all times. If in doubt consult the manufacturer's technical department for assistance.

NOTICE

Temporary repairs to ensure continuing operation

If a fault exists that could compromise safety, usually, no electrical supply should be connected to the circuit until it is satisfactorily dealt with. However, if a fault cannot be corrected immediately, but it is necessary to continue operation, an adequate temporary solution must be sought.

The owner of the equipment must be informed of this so that all parties are notified.

Repair and maintenance to electrical components should include initial safety checks and component inspection procedures.

- Initial safety checks include:
 - Capacitors must be discharged in a safe manner to avoid the possibility of sparking.
 - Live electrical components and wiring may not be exposed while charging, recovering or purging the system.
 - Ensure the device is continuously grounded.
- Check that cabling is not subject to wear and tear, corrosion, excessive pressure, vibration, sharp edges or any other adverse environmental effects.
- ► Take into account the effects of aging or continual vibration from sources such as compressors or fans.

Repairs to sealed components

► Ensure all electrical supplies are disconnected from the equipment being worked on prior to any removal of sealed covers, etc.

CAUTION

Potentially hazardous situations

- ▶ If electrical supply is absolutely necessary during servicing, make sure to locate a permanently operating form of leak detection at the most critical point to warn of a potentially hazardous situation.
- Ensure particular attention is paid that
 - the casing is not altered to the point where the level of protection is compromised,
 - cables are undamaged,
 - there is not an excessive number of connections,
 - all terminals are made to original specification,
 - seals are undamaged and sealing materials have not degraded to the point of not preventing ingress of flammable atmospheres.
 - glands, etc are fitted correctly.
- ► Ensure the device is mounted securely.
- Ensure replacement parts are in accordance with the manufacturer's specifications.

Repairs to intrinsically safe components

Intrinsically safe components do not have to be isolated prior to working on them. They are the only components which can be worked on while live in the presence of a flammable atmosphere.

- ► Ensure not to exceed the permissible voltage and current permitted for the equipment in use when applying permanent inductive or capacitance loads to the circuit.
- ► Ensure that the test apparatus is at the correct rating.

Leak detection methods

Leak detection fluids are suitable for use with most refrigerants. However, the use of detergents containing chlorine should be avoided, as the chlorine may react with the refrigerant and corrode the copper pipe-work.

The use of silicon sealant may inhibit the effectiveness of some types of leak detection equipment.

The following leak detection methods are deemed acceptable for systems containing flammable refrigerants.

- Ensure that the detector is not a potential source of ignition and is suitable for the refrigerant. For this reason, use electronic leak detectors to detect flammable refrigerants.
- Ensure to recalibrate an inadequate sensitivity in a refrigerant-free area.
- Leak detection equipment should be set at a percentage of the LFL of the refrigerant and be calibrated to the refrigerant employed.
- ► Ensure the appropriate percentage of gas (25 % maximum).
- ► If a leakage of refrigerant is found which requires brazing, all of the refrigerant must be either recovered from the system or isolated by shutting-off valves in a part of the system away from the leak.

Removal and evacuation

When breaking into the refrigerant circuit to make repairs - or for any other purpose - conventional procedures may be used.

Do not use compressed air or oxygen for purging refrigerant systems.

- Do not open the refrigerant system by brazing. Instead, adhere to the following procedure:
- ► Remove refrigerant.
- ► Flush the circuit with nitrogen.
- ► Evacuate.
- Flush again with nitrogen. This process may need to be repeated several times.
- ► Open the circuit by cutting or brazing.

Removal and evacuation for appliances containing flammable refrigerants

NOTICE

Flushing pipes containing flammable refrigerants

For appliances containing flammable refrigerants, the system should be flushed with oxygen-free nitrogen to render the unit safe.

- Always follow best practice.
- ► Flushing is achieved by vacuuming the system, then filling the system with oxygen-free nitrogen until the design pressure is reached.
- ► Vent the system to atmospheric pressure.
- Repeat the above process until there is no refrigerant is left in the system.
- Make sure to always flush the system before doing any brazing on the pipework.

Ensure that the outlet for the vacuum pump is away from any sources of ignition and that ventilation is available.

Charging procedures

Follow these requirements in addition to conventional charging procedures:

- ► Ensure that no contamination of different refrigerants occurs when using charging equipment.
- Keep hoses or lines as short as possible to minimise the amount of refrigerant contained in them.
- Keep refrigerant cylinders upright.
- ▶ Label the system when charging is complete (if not already labelled).
- Before recharging the system, pressure-test with oxygen-free nitrogen.
- ► Take extreme care not to overfill the refrigeration system.
- Leak-test the system on completing charging and prior to commissioning. A follow-up leak test is to be carried out before leaving the site.

Decommissioning

Before carrying out this procedure, it is essential that the technician is completely familiar with the equipment and all its details.

It is recommended good practice that all refrigerants are recovered safely or safely vented.

- ► An oil and refrigerant sample should be taken prior to the task, in case analysis is required before reusing reclaimed refrigerant.
- Ensure that:
 - electrical power is available before starting the work,
 - the system is electrically isolated,
 - mechanical equipment for handling refrigerant recovery into cylinders is available (if required),
 - recovery equipment and cylinders conform to the appropriate standards,
 - all personal protective equipment is available and being used correctly,
 - the recovery process is supervised at all times by a competent person.
- ▶ Pump down refrigerant system, if possible.
- Make sure that cylinder is situated on the scales before recovery takes place.
- Start the recovery machine and operate in accordance with manufacturer's instructions.

- ▶ Do not overfill cylinders (no more than 70 % of the water capacity, converted to refrigerant density at temperature of recovery).
- Never exceed the maximum working pressure of the cylinder, not even temporarily.
- Ensure that the cylinders and the equipment are removed from the site promptly and that all isolation valves on the equipment are closed off when the process is finished.

Recovered refrigerants should only be charged into another refrigeration system after they have been cleaned and checked first.

Labelling

- ► Ensure equipment label states that it has been decommissioned and emptied of refrigerant and that the label is dated and signed.
- Ensure equipment is labelled to state it contains flammable refrigerant.

Recovery

When removing refrigerant from a system, either for service or decommissioning, it is recommended good practice that all refrigerants are removed safely.

- Ensure only appropriate refrigerant recovery cylinders are employed and that they are appropriately labelled for the refrigerant. Cylinders must come complete with pressure relief valve and all associated shut-off valves in good working order.
- ► Ensure sufficient amount of cylinders for holding the total system charge is available.
- Ensure empty recovery cylinders are evacuated and, if possible, cooled before recovery takes place.
- Ensure recovery equipment is in good working order and suitable for the recovery of flammable refrigerants.
- Ensure instructions concerning the equipment at hand are included with it
- Ensure that a set of calibrated weighing scales in good working order is at hand.
- ► Ensure hoses are complete with leak-free disconnect couplings and are in good condition.
- ▶ Before use, check that recovery machine is in satisfactory working order, has been properly maintained, and that any associated electrical components are sealed to prevent ignition in the event of a refrigerant release. Consult the manufacturer if in doubt.
- ► Ensure the recovered refrigerant is returned to the refrigerant supplier in the correct recovery cylinder, with the relevant waste transfer note attached.
- Do not mix refrigerants in recovery units and especially not in cylinders.

If compressors or compressor oils are to be removed, ensure that they have been evacuated to an acceptable level so that no flammable refrigerant remains in the lubricant. Evacuation should be carried out prior to returning the compressor to the suppliers.

To accelerate this process, solely electric heating to the compressor body may be employed.

Transportation, marking and storage

- Ensure transport of equipment containing flammable refrigerants is in compliance with the transport regulations.
- Ensure the marking of the equipment using signs is in compliance with local regulations.

- Ensure the disposal of equipment containing flammable refrigerants is in compliance with national regulations.
- Ensure storage of equipment/appliances is in accordance with the manufacturer's instructions.

NOTICE

Storage of packed (unsold) equipment:

Storage package protection should be constructed in a way that mechanical damage to the equipment inside the package will not cause a leak of the refrigerant charge.

 Determine the maximum number of pieces of equipment permitted to be stored together according to local regulations

3 Product Information

3.1 Model Reference

Refer to the following table to determine the specific indoor and outdoor unit model.

Indoor Unit	Outdoor Unit	Capacity		Power Supply
		(Btu/h)	(kW)	
CL2000U W 26 E	CL2000 26 E	9k	2,6	220-240V~, 50Hz,
CL2000U W 35 E	CL2000 35 E	12k	3,5	1Phase
CL2000U W 53 E	CL2000 53 E	18k	5,3	
CL2000U W 70 E	CL2000 70 E	24k	7,0	

Table 1

3.2 Pipe Length and Drop Height

The length and elevation of connection pipe are shown in the table below. If the pipe length exceeds standard pipe length, additional refrigerant should be charged to ensure nominal cooling/heating capacity.

Capacity		Standard Length	Max Pipe Length	Max Elevation	Additional Refrigerant
(Btu/h)	(kW)				
9 k/12 k	2,6/3,5	5 m	25 m	10 m	12g/m
18 k	5,3		30 m	20 m	
24 k	7		50 m	25 m	24g/m

Table 2

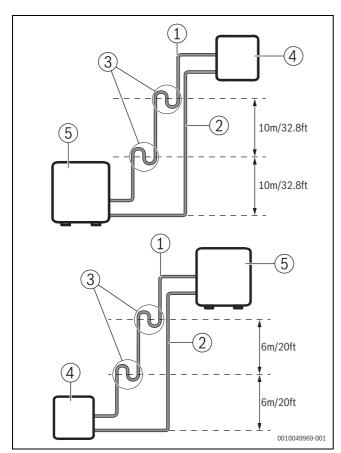


Fig. 1 Installation of indoor unit and outdoor unit

- [1] Gas-side pipe
- [2] Liquid-side pipe
- [3] Siphon-shaped elbow as oil separator
- [4] Indoor unit
- [5] Outdoor unit

If the outdoor unit is installed higher than the indoor unit, proper oil should return to the compressor along with the suction of refrigerant to keep lubrication of compressor. If the suction flow velocity drops below 7.62 m/s, oil won't return to the compressor. An oil trap should be installed every 6 m of vertical gas pipe in order to avoid a compressor damage.

-or-

If indoor unit is installed higher than outdoor unit, oil trap should be set every $10\,\mathrm{m}$ of vertical distance.

3.3 Dimensions

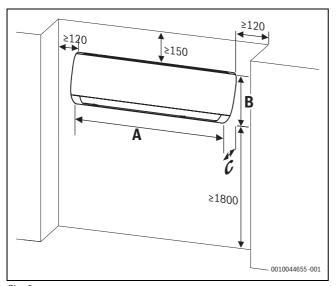


Fig. 2

	A [mm]	B [mm]	C [mm]
CL2000U W 26 E	805	285	194
CL2000U W 35 E	805	285	194
CL2000U W 53 E	957	302	213
CL2000U W 70 E	1040	327	220

Table 3

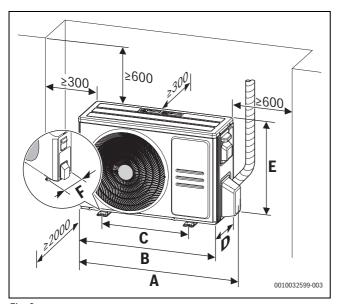


Fig. 3

	A [mm]		C [mm]	D [mm]	E [mm]	F [mm]
CL2000 26 E	790	720	452	270	495	255
CL2000 35 E	790	720	452	270	495	255
CL2000 53 E	874	805	511	330	554	317
CL2000 70 E	955	890	663	342	673	354

Table 4

3.4 Electrical Wiring Diagrams

3.4.1 Indoor unit wiring diagram

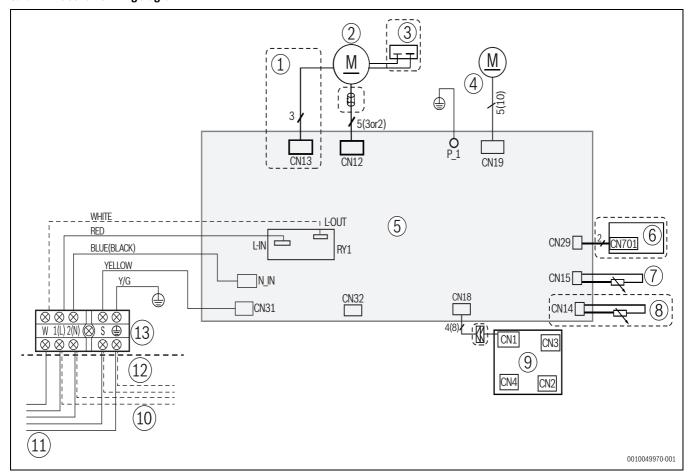


Fig. 4 Wiring diagram for indoor unit

- [1] Applicable to AC motor only
- [2] Indoor fan
- [3] Cap
- [4] Swing motor 1
- [5] Main board
- [6] Switch board
- [7] Pipe temperature sensor
- [8] Room temperature sensor
- [9] Display board
- [10] Applicable for MULTI and MONO unit without 1W standby control
- [11] Applicable for MONO unit with 1W standby control feature
- [12] Outdoor unit
- [13] Indoor unit

Brown Brown wire
Blue Blue wire

Blue (Black) Blue or black wire Blue (White) Blue or white wire

Red Red wire Yellow Yellow wire

Yellow (Black) Yellow or black wire Yellow/Green Yellow and green wire

White White wire CN.. Port code

___ Indicated element is optional

3.4.2 Outdoor unit wiring diagram

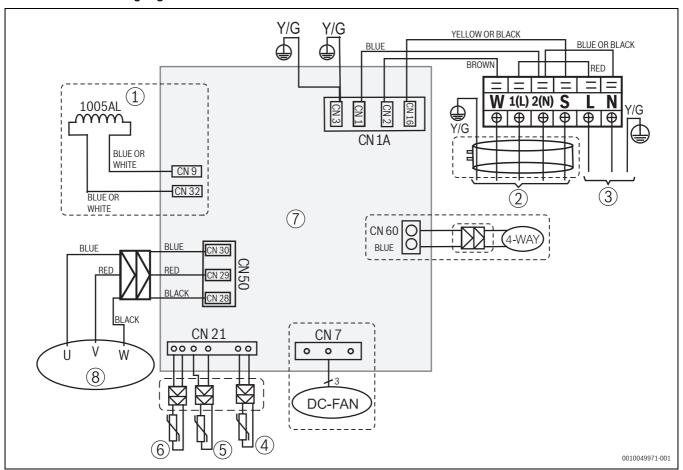


Fig. 5 Wiring diagram for outdoor unit with CL2000 26 E, CL2000 35 E and CL2000 53 E

- [1] Reactor
- [2] Indoor unit
- [3] Power supply
- [4] Ambient temperature sensor
- [5] Condenser temperature sensor
- [6] Discharge temperature sensor
- [7] Main board
- [8] Compressor

Brown Brown wire
Blue Blue wire

Blue (Black) Blue or black wire Blue (White) Blue or white wire

Red Red wire Yellow Yellow wire

Yellow (Black) Yellow or black wire Yellow/Green Yellow and green wire

White White wire CN.. Port code

___ Indicated element is optional

For standby control, the cross section area of the communication cable must be selected to suit the maximum system current. The maximum system current is equal to the sum of indoor unit and outdoor unit rated current.

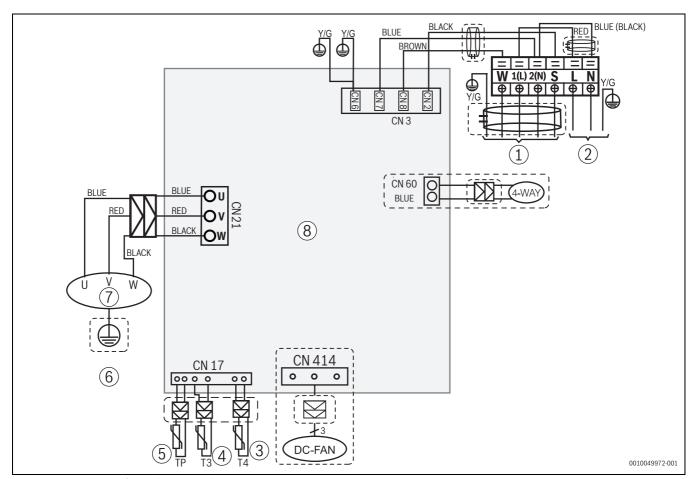


Fig. 6 Wiring diagram for outdoor unit with CL2000 70 E

- [1] Indoor unit
- [2] Power supply
- [3] Ambient temperature sensor
- [4] Condenser temperature sensor
- [5] Discharge temperature sensor
- [6] Ground wire of the compressor is contained in D box
- [7] Compressor
- [8] Outdoor main PCB

Brown Brown wire
Blue Blue wire

Blue (Black) Blue or black wire Blue (White) Blue or white wire

Red Red wire Yellow Yellow wire

Yellow (Black) Yellow or black wire Yellow/Green Yellow and green wire

White White wire CN.. Port code

_ Indicated element is optional

For standby control the cross section area of the communication cable must be selected to suit the maximum system current. The maximum system current is equal to the sum of indoor unit and outdoor unit rated current.

3.4.3 Outdoor unit main PCB ports

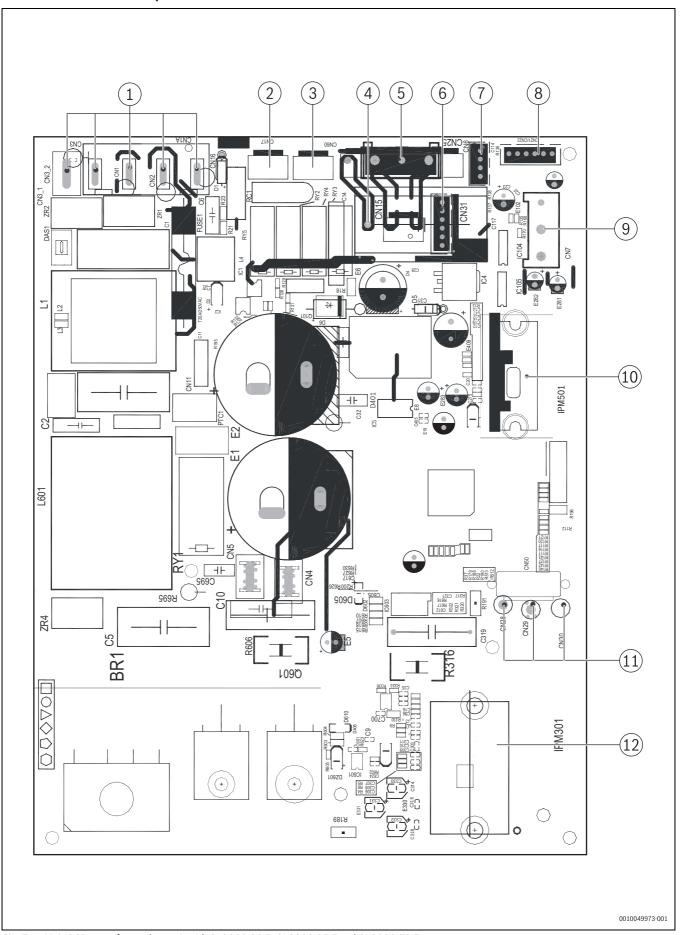


Fig. 7 Main PCB ports for outdoor unit with CL2000 26 E, CL2000 35 E and CL2000 53 E

Label in Fig. 7	Name	Port	Content	Port voltage
1	CN1A	CN3	Earth: connect to Ground	
		CN1	N_in: connect to N-line	208-230V AC
		CN2	L_in: connect to L-line	208-230V AC
		CN6	S: connect to indoor unit communication	
2	HEAT1	CN17	connect to compressor heater	208-230V AC (when ON)
3	4-WAY	CN60	connect to 4-way valve	208-230V AC (when ON)
4	HEAT2	CN15	connect to chassis heater	208-230V AC (when ON)
5	AC-FAN	CN25	connect to AC fan	
6	PMV	CN31	connect to Electric Expansion Valve	
7	TESTPORT	CN6	used for testing	
8	TP	CN21/CN22	connect to pipe temperature sensor T3, ambient temperature	
	T4		sensor T4, exhaust temperature sensor TP	
	T3			
9	DC-FAN	CN7	connect to DC fan	
10	FAN_IPM	IPM 501	IPM for DC fan	
11	W	CN28	connect to compressor	
	V	CN29	OV AC (standby)	
	U	CN30	10-200V AC (running)	
12	COMP_IPM	IPM 301	IPM for compressor	

Table 5

Actual appliance might differ. This section is for reference only.

3.4.4 Outdoor unit printed circuit board diagram

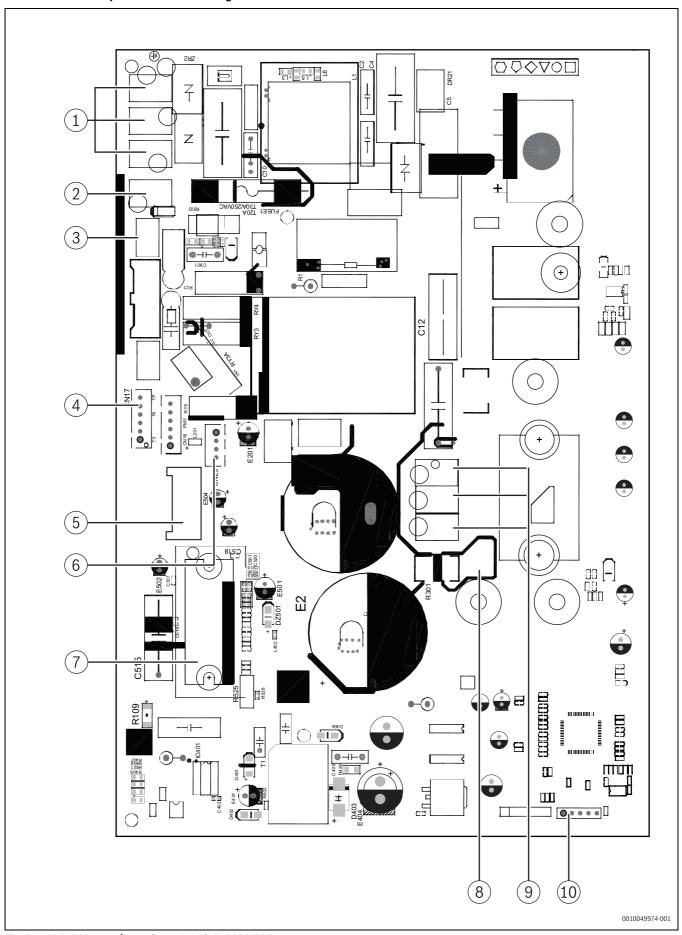


Fig. 8 Main PCB ports for outdoor unit with CL2000 70 E

Label in Fig. 8	Name	Port	Content	Port voltage
1	Power Supply	CN6	Earth: connect to Ground	
		CN7	N_in: connect to N-line	208-230V AC
		CN8	L_in: connect to L-line	208-230V AC
2	S	CN2	S: connect to indoor unit communication	
3	4-WAY	CN60	connect to 4 way valve	208-230V AC (when ON)
4	TP, T4, T3	CN17	connect to pipe temp. sensor T3, ambient temp. sensor T4,	
			discharge temp. sensor TP	
5	DC-FAN	CN414	connect to DC fan	
6	TESTPORT	CN23	used for testing	
7	FAN_IPM	IPM501	IPM for DC fan	
8	COMP_IPM	IPM1	IPM for compressor	
9	U	CN27	Compressor connection	Standby: 0V AC
	V	CN28		• Running: 200-300V AC
	W	CN29		
10	EE_PORT	CN505	EEPROM programmer port	

Table 6

 $\label{lem:continuous} \mbox{Actual appliance might differ. This section is for reference only.}$

4 Product Features

4.1 Indoor unit display

Symbol	Explanation
Number	Temperature display
∏∏ (3 sec)	Displayed with some functions, if these are switched on. Indicates that the ON timer is active when the indoor unit is switched off.
OF (3 sec) Displayed with some functions, if these are switc	
AP Mode of WIFI connection	
dF	Automatic defrosting active
cF	Warming in heating mode
SC The self-cleaning function is active ¹⁾	
FP Heating in room temperature under 8 °C	
E-C-0 ²⁾	The ECO function is active ³⁾

- 1) Available on select units only.
- 2) Set temperature and E gradually illuminates to 88 in one second intervals
- 3) Available on select units only.

Table 7 Symbols in the display

4.2 Safety features

Compressor three-minute delay at restart

Compressor functions are delayed for up to 1 minute upon first starting the unit and for up to 3 minutes upon subsequent restarts.

Zero crossing detection error protection (except for DC fan units)

If the air conditioner can not detect zero crossing signal for 4 minutes or the zero crossing signal time interval is not correct, the unit will stop and the LED will display the failure. The correct zero crossing signal time interval should be between 6-13 ms.

Automatic shut-off based on discharge temperature

If the compressor discharge temperature exceeds a certain level for a period of time, the compressor ceases operation.

Automatic shutoff based on fan speed

If the indoor fan speed registers below 300 RPM for an extended period of time, the unit ceases operation. The corresponding error code will be displayed on the indoor unit.

Inverter module protection

The inverter module has an automatic shut-off mechanism based on the unit's current, voltage and temperature. If automatic shut-off is initiated, the corresponding error code will be displayed on the indoor unit and the unit ceases operation.

Indoor fan delayed operation

- When the unit starts, the louver is automatically activated and the indoor fan will operate after a period of 7 seconds.
- If the unit is in heating mode, the indoor fan is regulated by the anticold air function.

Sensor redundancy and automatic shut-off

- If one temperature sensor malfunctions, the unit continues operation and displays the corresponding error code, allowing for emergency use.
- If more than one temperature sensor is malfunctioning, the unit ceases operation.

Refrigerant leakage detection

This function is active only when cooling mode is selected. It will detect if the compressor is being damaged by refrigerant leakage or by compressor overload. This is measured using the coil temperature of evaporator T2 when the compressor is in operation.

4.3 Operating functions

Abbreviations

Abbreviation	Element
T1	Indoor room temperature
T2	Coil temperature of indoor unit
Т3	Coil temperature of outdoor unit
T4	Outdoor ambient temperature
T _S	Set temperature
Td	Control target temperature
TP	Compressor discharge
	temperature

Table 8 Element abbreviations

4.3.1 Fan mode

When fan mode is activated:

- The outdoor fan and compressor are stopped.
- Temperature control is disabled and no temperature setting is displayed.
- The indoor fan speed can be set to high, medium, low or auto.
- The louver operations are identical to those in cooling mode.
- Auto fan: In fan-only mode, the indoor unit operates the same as auto fan in cooling mode with the temperature set at 24°C.

4.3.2 Cooling mode

Compressor Control

Cooling temperature compensation (Δ T5) is a well-setting parameter of EEPROM. Its value ranges from -2°C to 2°C. The default value is 0.

- When T1-T_s < Δ T5-2°C, the compressor ceases operation.
- When T1-T_s > Δ T5+3°C, the compressor continues operation.
- When the indoor unit is operating in mute mode, the compressor operates at a low frequency.
- When the current exceeds the pre-set value, the current protection function activates and the compressor ceases operation.

Indoor fan control

In cooling mode, the indoor fan operates continuously. The fan speed can be set to high, medium, low, or auto.

If the compressor ceases operation when the configured temperature is reached, the indoor fan motor operates at the minimum or configured speed.

In auto fan mode the following tables apply.

T1-Td [°C] drops below value	Fan Speed decreases to value
≤ 3.5	80 %
≤ 1	60 %
≤ 0.5	40 %
≤ 0	20 %
≤ -0.5	1 %

Table 9 Fan speed in auto fan mode

T1-Td[°C] rises above value	Fan Speed increases to value
> 0	20 %
> 0.5	40 %
> 1	60 %

T1-Td[°C] rises above value	Fan Speed increases to value		
> 1.5	80 %		
> 4	100 %		

Table 10 Fan speed in auto fan mode

Outdoor fan control

Case 1:

- The outdoor unit will run at a different fan speed according to T4 and compressor running frequency.
- · The fan speeds are different for different outdoor units.

Case 2

- The outdoor unit will run at a different fan speed according to T4.
- · The fan speeds are different for different outdoor units.

Condenser temperature protection

When the condenser temperature exceeds a configured value, the compressor ceases operation.

Evaporator temperature protection

When evaporator temperature drops below a configured value, the compressor and outdoor fan cease operation.

4.3.3 Auto mode

This mode can be selected with the remote controller and the setting temperature can be changed between 17°C-30°C.

In auto mode, the machine selects cooling, heating, or fan-only mode on the basis of ΔT (ΔT =T1-TS).

ΔΤ	Running mode
ΔT>A	Cooling
B°C≤ΔT≤A	Fan-only
ΔT <b< td=""><td>Heating¹⁾</td></b<>	Heating ¹⁾

1) In auto mode, cooling only models run the fan

Indoor fan will run at auto fan speed.

The louver operates same as in relevant mode.

If the machine switches mode between heating and cooling, the compressor will keep stopping for certain time and then choose mode according to ΔT .

4.3.4 Heating mode

Compressor control

Heating temperature compensation(Δ T3) is a well-setting parameter of EEPROM. Its value ranges from -6°C to 6°C.

- When T1-T_s>- Δ T3, the compressor ceases operation.
- When T1-T_s<-ΔT3-1.5°C, the compressor continues operation.
- When the indoor unit is operating in mute mode, the compressor operates at a low frequency.
- When the current exceeds the pre-set value, the current protection function activates and the compressor

Indoor Fan Control

When the compressor is on, the indoor fan speed can be set to high, medium, low, or auto. And the anti-cold wind function has the priority.

Anti-cold air function: The indoor fan is controlled by the indoor temperature T1 and the indoor unit coil temperature T2.

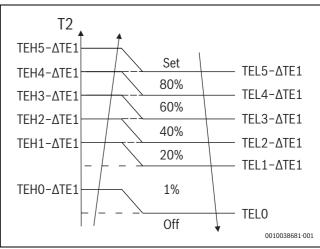


Fig. 9 Anti-cold air function

Off Compressor turns off

Set Set fan speed

TEH.. Evaporator coil temperature (rising)

TEL.. Evaporator coil temperature (decreasing)

T2 Indoor unit coil temperature

T1 [°C]	ΔTE1[°C]
≥ 19	0
≥ 15 and < 19	19 - T1 = 04
< 15	4

Table 11

When the indoor temperature T1 reaches the setting temperature, the compressor continues operation, the indoor fan motor runs at the minimum speed or setting speed (the anti-cold air function is valid).

In auto fan mode the following tables apply:

T1-T _S [°C] drops below value	Fan Speed increases to value
≤ 0.5	20 %
≤ 0	60 %
≤ -1.5	80 %
≤ -3	100 %

Table 12 Fan speed in auto fan mode

T1-T _S [°C] rises above value	Fan Speed decreases to value
> -1.5	80 %
> 0	60 %
> 0.5	40 %
> 1	20 %

Table 13 Fan speed in auto fan mode

Outdoor Fan Control

Case 1:

- The outdoor unit will run at a different fan speed according to T4 and compressor running frequency.
- The fan speeds are different for different outdoor units.

Case 2:

- The outdoor unit will run at a different fan speed according to T4.
- · The fan speeds are different for different outdoor units.

Defrosting mode

Case 1:

- The unit enters defrosting mode according to changes in the temperature value of T3, T4 and the compressor running time.
- In defrosting mode, the compressor continues to run, the indoor and outdoor motor will cease operation and the defrost light of the indoor unit will turn on. In the display, dF is displayed.
- If any one of the following conditions is satisfied, defrosting ends and the machine switches to normal heating mode:
 - T3 rises above TCDE1.
 - T3 maintained above TCDE2 for 80 seconds.
 - Unit runs for 15 minutes consecutively in defrosting mode.

Case 2:

- The unit enters defrosting mode according to changes in the temperature value of T3 and the compressor running time.
- In defrosting mode, the compressor continues to run, the indoor and outdoor motor will cease operation and the defrost light of the indoor unit will turn on. In the display, dF is displayed.
- If any one of the following conditions is satisfied, defrosting ends and the machine switches to normal heating mode:
 - T3 rises above TCDE1.
 - T3 maintained above TCDE2 for 80 seconds.
 - Unit runs for 15 minutes consecutively in defrosting mode.

Evaporator temperature protection

When the evaporator temperature exceeds a pre-set protection value, the compressor ceases operation.

4.3.5 Drying mode

Indoor fan speed is fixed at breeze and can't be changed. The louver angle is the same as in cooling mode.

All protections are active and the same as that in cooling mode.

4.3.6 Forced operation

Forced cooling mode

The compressor and outdoor fan continue to run (fixed at rated frequency), and the indoor fan runs at rated speed. After running for 30 minutes, the AC will switch to auto mode with a set temperature of $24 \, ^{\circ}$ C

Forced auto mode

Forced auto mode operates the same as normal auto mode with a set temperature of $24\,^{\circ}\text{C}$.

Exiting forced operation

The unit exits forced operation when it receives the following signals:

- ► Switch on/Switch off
- ► Timer on/Timer off
- ▶ Sleep mode
- ➤ Follow me
- ► Mode, fan speed or temperature settings are changed

Forced defrosting mode

- ► To enter forced defrosting, press the **AUTO/COOL** button for 5 seconds when in forced cooling mode.
- ► Indoor fan will stop, defrosting lamp will light up.
- ► To guit this mode:
 - Quit normal defrosting.
 - Turn off by RC.
 - Press AUTO/COOL button again for 5 seconds.

4.3.7 Sleep mode

The sleep function is available in cooling, heating or auto mode.

The operational process for sleep mode is as follows:

- When cooling, the temperature rises 1 °C (to max. 30 °C) every hour.
 After 2 hours, the temperature stops rising and the indoor fan is fixed at low speed.
- When heating, the temperature decreases 1 °C (to min. 16 °C) every hour. After 2 hours, the temperature stops decreasing and the indoor fan is fixed at low speed. Anti-cold air function takes priority.
- · The unit exits this mode after 8 hours.

4.3.8 Auto-restart

The indoor unit has an auto-restart module which allows the unit to restart automatically. The module stores the current settings and, in case of a sudden power failure, will restore those setting automatically within 3 minutes after return of power. If there is a power failure while the unit is running, the compressor starts 3 minutes after the unit restarts. If the unit was off before the power failure, the unit stands by.

4.3.9 Refrigerant leakage detection

The display area will show **EC** when the outdoor unit detects refrigerant leakage.

4.3.10 8 °C Heating

In heating mode, the temperature can be set to as low as 8°C, preventing the indoor area from freezing if unoccupied during severe cold weather.

4.3.11 Self-cleaning

If you press **Self Clean** when the unit is in cooling or drying mode:

 The indoor unit will run in fan-only mode, then low heat, and finally in fan-only mode.

The function keeps the indoor unit dry and prevents mold growth.

When match with multi outdoor unit, this function is disabled.

4.3.12 Follow Me function

If you press **Follow Me** on the remote, the indoor unit will beep. This indicates the follow me function is active.

Once active, the remote control will send a signal every 3 minutes, with no beeps. The unit automatically sets the temperature according to the measurements from the remote control.

The unit will only change modes if the information from the remote control makes it necessary, not from the unit's temperature setting.

If the unit does not receive a signal for 7 minutes or you press **Follow Me**, the function turns off. The unit regulates temperature based on its own sensor and settings.

4.3.13 Silence

Press **Silence** on the remote control to enable the **SILENCE** function. While this function is active, the compressor frequency is maintained at a lower level than F3. The indoor unit will run at faint breeze, which reduces noise to the lowest possible level.

When match with multi outdoor unit, this function is disabled.

5 Refrigerant

5.1 Recharge Refrigerant

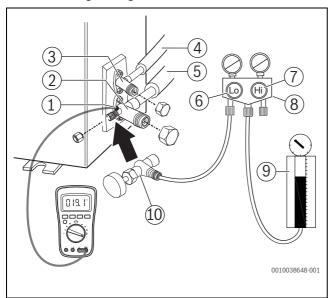


Fig. 10 Refrigerant recharge

- [1] Temperature measuring point
- [2] Gas valve
- [3] Liquid valve
- [4] Liquid pipe
- [5] Gas pipe
- [6] Low pressure control
- [7] High pressure control
- [8] Pressure gauge
- [9] Refrigerant bottle
- [10] Schrader valve opener
- ► Close the gas and the liquid valves.
- Connect the charge hose between pressure gauge and service port of the gas valve.
- Connect another charge hose between pressure gauge and valve on the refrigerant bottle.
- ► If necessary, invert the refrigerant bottle to ensure a complete liquid charge.
- ► Vacuum the set of gauges and charging hoses.
- Place the refrigerant bottle onto an electronic scale and record the starting weight.
- ► Fully open Schrader opening valve, gas valve and liquid valve.
- Operate the air conditioner in cooling mode to charge the system with liquid refrigerant.
- Slowly open the refrigerant bottle valve to charge the required amount of refrigerant.
- When the electronic scale displays the correct weight, close the refrigerant bottle valve and turn off the air conditioner.
- ▶ Unscrew and close the Schrader opening valve.
- Pump down and collect the refrigerant from the hoses into the system.
- ▶ Mount the caps of service port, gas and liquid valve.
- ▶ Use a torque wrench to tighten the caps to a torque of 18 Nm.
- Check for gas leakage.

5.2 Evacuate Refrigerant for Re-Installation

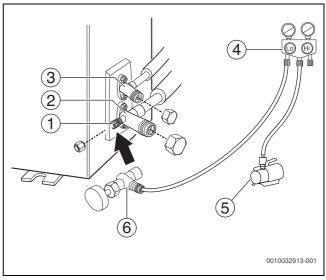


Fig. 11

- [1] Schrader valve opener connection point (service port)
- [2] Gas valve
- [3] Liquid valve
- [4] Pressure gauge
- [5] Vacuum pump
- [6] Schrader valve opener

5.2.1 Indoor Unit

Collecting the refrigerant in the outdoor unit

- ► Confirm that the liquid and gas valves are opened.
- Connect the charge hose between pressure gauge and service port of the gas valve.
- ► Connect another charge hose between pressure gauge and vacuum
- ► Vacuum the set of gauges and charging hoses.
- Close the liquid valve.
- Operate the air conditioner in cooling mode. Cease operations when the gauge reaches 0.1 MPa. Close the gas valve so that the gauge rests between 0.3 MPa and 0.5 MPa.
- Disconnect the charge set and mount the caps of service port, liquid valve and gas valve.
- ▶ Use a torque wrench to tighten the caps to a torque of 18 Nm.
- Check for gas leakage.

Air purging with vacuum pump

- ► Tighten the flare nuts of the indoor and outdoor units, and confirm that liquid and gas valves are closed.
- Connect the charge hose between pressure gauge and service port of the gas valve.
- Connect another charge hose between pressure gauge and vacuum pump.
- ► Fully open the manifold valve.
- ▶ Using the vacuum pump, evacuate the system for at least 30 minutes.
- Check whether the compound meter indicates -0.1 MPa (approx. 500 microns).
 - If the meter does not indicate above pressure after 30 minutes, continue evacuating for an additional 20 minutes.
 - If the pressure does not achieve above pressure after 50 minutes, check for leakage.
 - If the pressure successfully reaches above pressure, fully close the manifold valve, then cease vacuum pump operations.
- ► Wait for 5 minutes then check whether the gauge needle moves after turning off the vacuum pump. If the gauge needle moves backward, check wether there is gas leakage.

- ► Loosen the flare nut of the lower valve for 6 or 7 seconds and then tighten the flare nut again.
- ► Confirm the pressure display in the pressure indicator is slightly higher than the atmospheric pressure.
- ▶ Remove the charge hose from the gas valve.
- ► Fully open the liquid and gas valves and tighten their caps.

5.2.2 Outdoor Unit

Evacuation for the whole system

- ► Confirm that the liquid and gas valves are opened.
- ► Connect the vacuum pump to the gas valve's service port.
- ► Evacuate the system for approximately one hour. Confirm that the compound meter indicates -0.1 MPa (approx. 500 microns).
- Close the manifold valve on the charge set and turn off the vacuum pump.
- Wait for 5 minutes then check whether the gauge needle moves after turning off the vacuum pump.
- ► If the gauge needle moves backward, check whether there is gas leakage.
- ▶ Disconnect the charge hose from the vacuum pump.
- ▶ Mount the caps of service port, liquid valve and gas valve.
- ▶ Use a torque wrench to tighten the caps to a torque of 18 Nm.

Refrigerant charging

► Charge the refrigerant according to page 19.

5.3 Pressure on service port for refrigerants R32

5.3.1 Cooling chart for refrigerant R32

Unit for	DB/WB T _{IDU}	DB T _{odu} [°C]									
pressure	[°C]	-17	-15	-9.44	7.22	23.89	29.44	35	40.56	46.11	48.89
					P	ressure on	service po	rt			
bar	21.11/15	6.5	6.6	7.4	8.2	8.4	8.0	8.3	8.8	10.3	10.8
	23.89/17.22	6.8	6.9	8.1	8.8	8.8	8.5	8.9	9.3	10.9	11.4
	26.67/19.44	7.2	7.3	8.7	9.7	9.5	9.1	9.3	9.8	11.4	12.1
	32.22/22.78	7.9	8.0	9.8	10.7	10.5	9.7	10.2	10.8	12.6	13.3
MPa	21.11/15	0.65	0.66	0.74	0.82	0.84	0.80	0.83	0.88	1.03	1.08
	23.89/17.22	0.68	0.69	0.81	0.88	0.88	0.85	0.89	0.93	1.09	1.14
	26.67/19.44	0.72	0.73	0.87	0.97	0.95	0.91	0.93	0.98	1.14	1.21
	32.22/22.78	0.79	0.80	0.98	1.07	1.05	0.97	1.02	1.08	1.26	1.33

Table 14 Pressure on service port in cooling mode

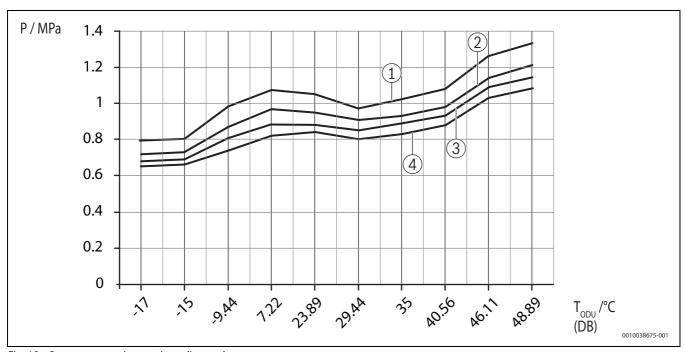


Fig. 12 Pressure on service port in cooling mode

DB/WB T_{IDU} [°C]:

- [1] 32.22/22.78
- [2] 26.67/19.44
- [3] 23.89/17.22
- [4] 21.11/15
- DB Dry bulb temperature
- P Pressure on service port
- T_{IDU} Temperature at indoor unit
- T_{ODU} Temperature at outdoor unit
- WB Wet bulb temperature

5.3.2 Heating chart for refrigerant R32

Unit for	DB T _{IDU}	DB/WB T _{ODU} °C						
pressure	°C	13.89/11.67	8.33/6.11	2.78/0.56	-2.78/-5	-8.33/-10.56	-17/-19	-27/-28
		Pressure on service port						
bar	12.78	30.9	29.1	25.8	23.3	21.2	18.9	16.8
	18.33	33.2	30.6	27.1	25.9	23.8	20.9	19.4
	23.89	34.5	32.1	28.4	26.8	25.4	21.9	20.4
MPa	12.78	3.09	2.91	2.58	2.33	2.12	1.89	1.68
	18.33	3.32	3.06	2.71	2.59	2.38	2.09	1.94
	23.89	3.45	3.21	2.84	2.68	2.54	2.19	2.04

Table 15 Pressure on service port in heating mode

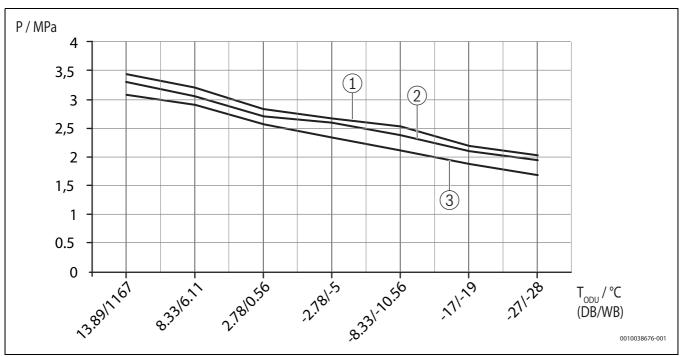


Fig. 13 Pressure on service port in heating mode

DB T_{IDU} [°C]:

- [1] 23.89
- [2] 18.33
- [3] 12.78
- DB Dry bulb temperature
- P Pressure on service port
- T_{IDU} Temperature at indoor unit
- T_{ODU} Temperature at outdoor unit
- WB Wet bulb temperature

5.3.3 System pressure table for refrigerant R32

	-	-
Pres kPa		Temperature °C
100	bar 1	-51.909
150	1.5	-43.635
200	2	-37.323
250	2.5	-32.15
300	3	-27.731
350	3.5	-23.85
400	4	-20.378
450	4.5	-17.225
500	5	-14.331
550	5.5	-11.65
600	6	-9.150
650	6.5	-6.805
700	7	-4.593
750	7.5	-2.498
800	8	-0.506
850	8.5	1.393
900	9	3.209
950	9.5	4.951
1000	10	6.624
1050	10.5	8.235
1100	11	9.790
1150	11.5	11.291
1200	12	12.745
1250	12.5	14.153
1300	13	15.52
1350	13.5	16.847
1400	14	18.138
1450	14.5	19.395
1500	15	20.619
1550	15.5	21.813
1600	16.5	22.978
1650	16.5	24.116
1700	17	25.229
1750	17.5	26.317
	18	27.382
1800 1850	18.5	
	19	28.425
1900 1950	19.5	29.447 30.448
2000		
	20 20.5	31.431
2050		32.395
2100 2150	21 21.5	33.341 34.271
2200	22	35.184
2250	22.5	36.082
2300	23	36.965
2350	23.5	37.834
2400	24	38.688
2450	24.5	39.529
2500	25	40.358
2550	25.5	41.173
2600	26	41.977
2650	26.5	42.769
2700	27	43.55

Pres	Temperature	
kPa	bar	°C
2750	27.5	44.32
2800	28	45.079
2850	28.5	45.828
2900	29	46.567
2950	29.5	47.296
3000	30	48.015
3050	30.5	48.726
3100	31	49.428
3150	31.5	50.121
3200	32	50.806
3250	32.5	51.482
3300	33	52.15
3350	33.5	52.811
3400	34	53.464
3450	34.5	54.11
3500	35	54.748

Table 16 System pressure table

6 Indoor Unit Disassembly

i

Figures are for reference only. Actual unit's appearance may vary.

6.1 Front Panel

► Hold the front panel by the tabs on the both sides and lift it.

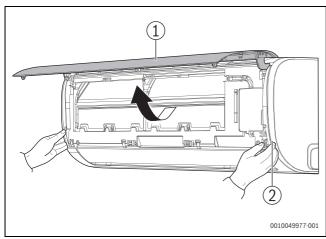


Fig. 14

- [1] Front panel
- [2] Tab
- ▶ Push up the bottom of an air filter and then pull it out downwards.

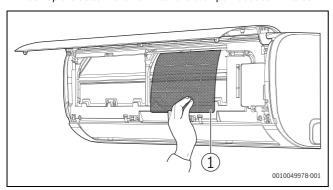


Fig. 15

[1] Filter

▶ Open the horizontal louver and push the hook towards left to open it.

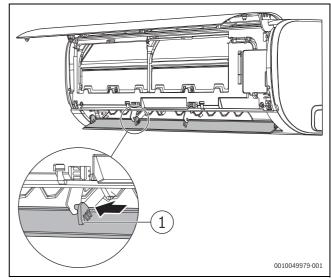


Fig. 16

- [1] Hook
- ► Bend the horizontal louver lightly by both hands to loosen the hooks, then remove the horizontal louver.

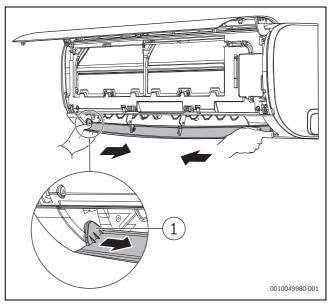


Fig. 17

[1] Hook

- ▶ Remove one screw and then remove the electrical cover.
- ▶ Disconnect the connector for display board.
- ► Remove the display board.

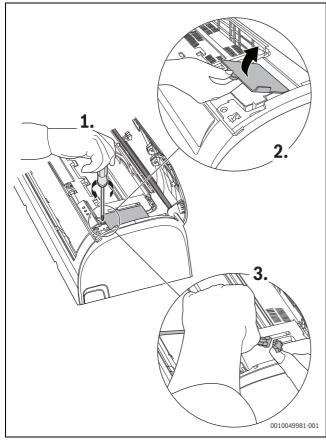


Fig. 18

- ▶ Open the two screw caps and remove the screws.
- ► Release the four hooks.

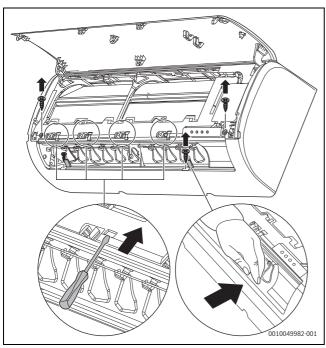


Fig. 19

► Release the seven hooks in the back.

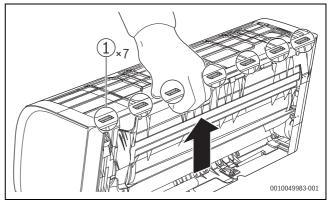


Fig. 20

[1] Hooks

▶ Pull out the panel frame while pushing the hook through a clearance between the panel frame and the heat exchanger.

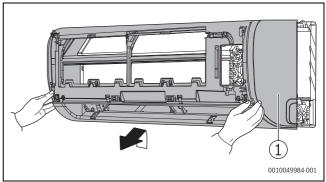


Fig. 21

[1] Panel frame

6.2 Electrical parts

Remove the front panel (\rightarrow chapter 6.1, p. 24) before disassembling electrical parts.

► Remove the fixing screw and then remove the cover of electronic box and the terminal cover.

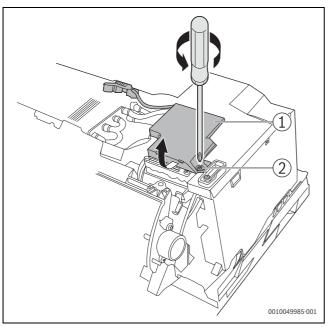


Fig. 22

- [1] Electronic cover
- [2] Fixing screw
- ▶ Pull out the room temperature sensor (T1) and the coil temperature sensor (T2).
- ▶ Remove the two screws used for the ground connection.

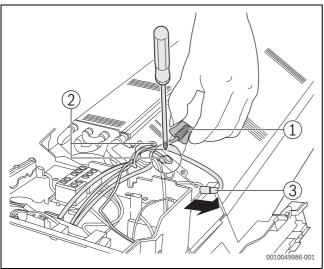


Fig. 23

- [1] T1 sensor
- [2] Ground screws
- [3] T2 sensor

► Remove the fixing screw.

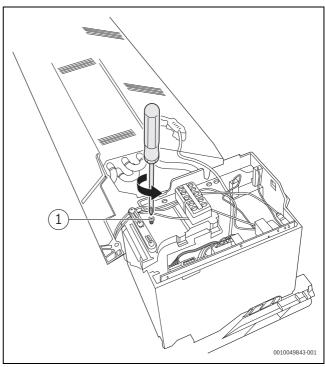


Fig. 24

- [1] Fixing screw
- ► Pull out the electrical control box along the direction indicated below to remove it.

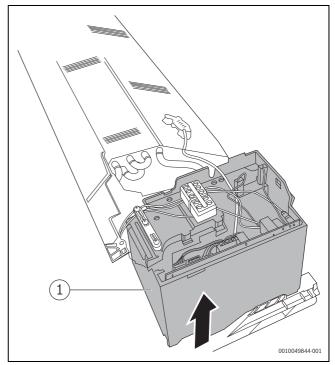


Fig. 25

[1] Electronic box

▶ Disconnect the wires. Then remove the electronic main board.

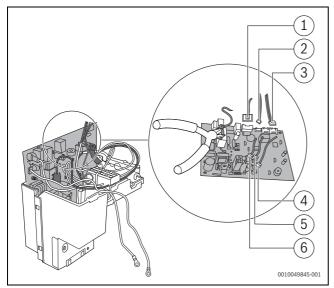


Fig. 26

- [1] Indoor fan motor
- [2] Applicable to unit motor only
- [3] Swing motor
- [4] Room temperature sensor
- [5] Pipe temperature sensor
- [6] Display board
- ▶ Remove the fixing screw, then remove the capacitor of fan motor.

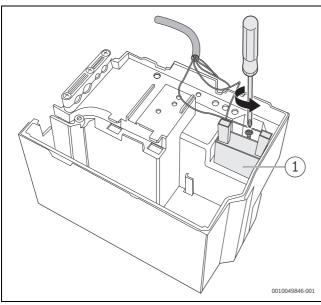


Fig. 27

[1] Fan motor capacitor

6.3 Evaporator

Remove the front panel, electrical parts and fan (\rightarrow chapter 6.1, p. to \rightarrow chapter 6.4, p. 28) before disassembling evaporator.

▶ Disassemble the pipe holder located at the rear of the unit.

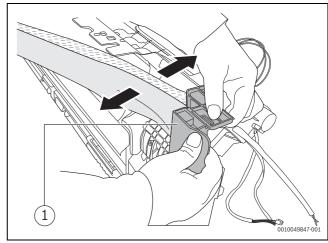


Fig. 28

- [1] Pipe holder
- ▶ Remove the screws on the evaporator located at the fixed plate.

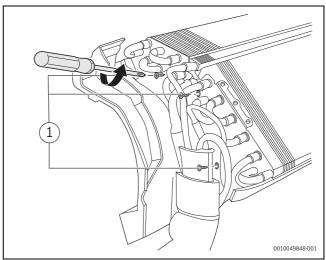


Fig. 29

[1] Screws

► Remove the two screws on the evaporator located at the base of the bearing side.

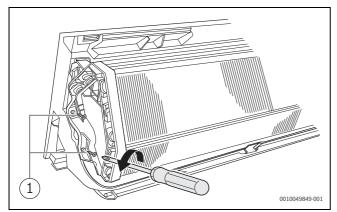


Fig. 30

- [1] Evaporator
- ▶ Pull out the evaporator.

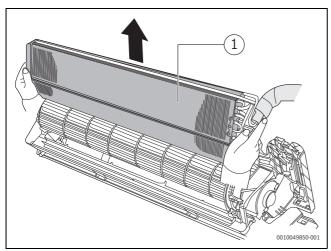


Fig. 31

[1] Evaporator

6.4 Fan motor and fan

Remove the front panel (\rightarrow chapter 6.1, p. 24), electrical parts (\rightarrow chapter 6.2, p. 26) and evaporator (\rightarrow chapter 6.3, p. 27) before disassembling fan motor and fan.

► Remove the two screws and remove the fixing board of the fan motor.

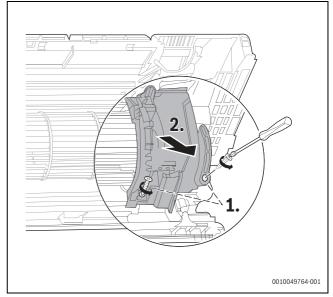


Fig. 32

- [1] Screws
- ► Remove the bearing sleeve.

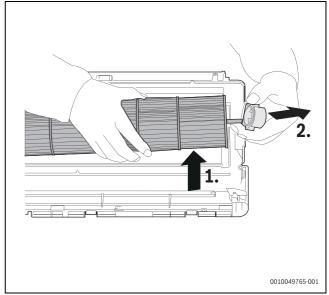


Fig. 33

- ► Remove the fixing screw.
- ▶ Pull out the fan motor and fan assembly from the side.

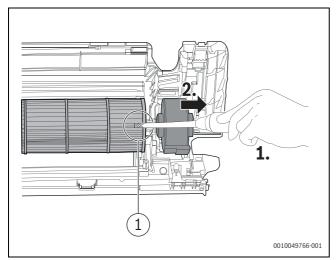


Fig. 34

[1] Fixing screw

6.5 Step motors

Remove the front panel (→ chapter 6.1, p. 24) and electrical parts (→ chapter 6.2, p. 26) before disassembling step motor.

▶ Remove the two screws, then remove the step motor.

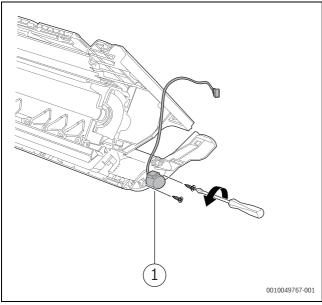


Fig. 35

[1] Step motor

7 Outdoor Unit Disassembly

Figures are for reference only. Actual unit's appearance may vary.

7.1 Panel plate

7.1.1 CL2000 26 E, CL2000 35 E

- ► Turn off the air conditioner and the power breaker.
- Remove the screw of the big handle and then remove the big handle (1 screw).

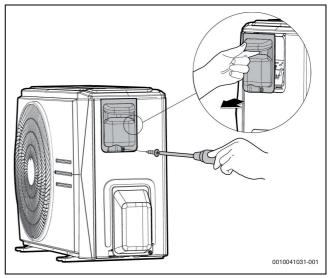


Fig. 36

► Remove the screws of the top cover [1] and then remove the top cover (4 screws). One of the screws is located underneath the big handle.

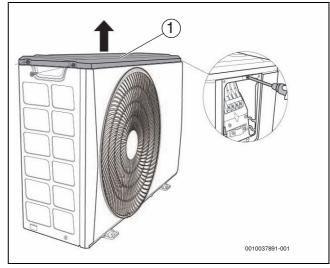


Fig. 37

[1] Top cover

► Remove the screws of the water collecting cover [1] and then remove the cover (2 screws).

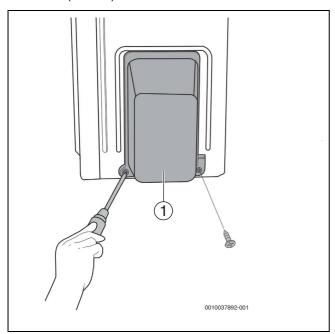


Fig. 38

- [1] Water collecting cover
- ► Remove the screws of the front panel [1] and then remove the front panel (6 screws for the on/off models and 8 screws for the inverter models).

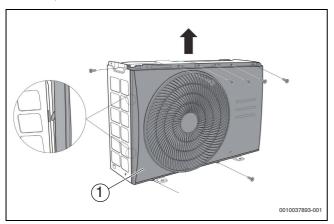


Fig. 39

[1] Front panel

► Remove the screws of the right panel [1] (5 screws) and then remove the right panel.

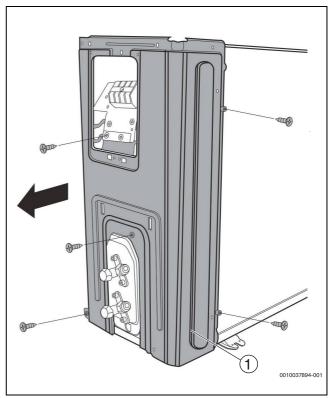


Fig. 40

[1] Right panel

7.1.2 CL2000 53 E

- ► Turn off the air conditioner and the power breaker.
- ► Remove the screw of the big handle and then remove the big handle (1 screw).

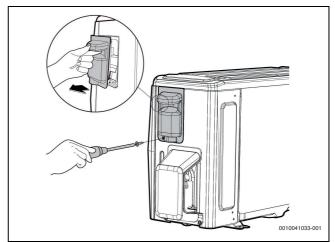


Fig. 41

► Remove the screws of the top cover and then remove the top cover [1] (3 screws). One of the screws is located underneath the big handle.

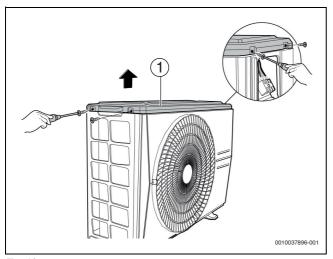


Fig. 42

[1] Top cover

► Remove the screws of the water collecting cover [1] and then remove the cover (2 screws).

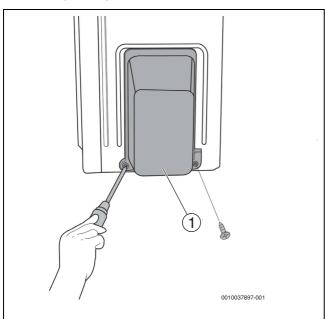


Fig. 43

[1] Water collecting cover

► Remove the screws of the front panel [1] and then remove the front panel (7 screws for the on/off models and 9 screws for the inverter models).

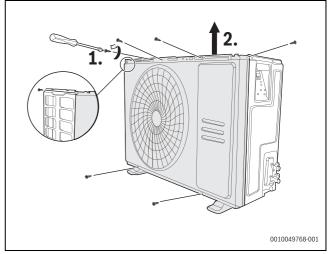


Fig. 44

► Remove the screws of the right panel (6 screws) and then remove the right panel.

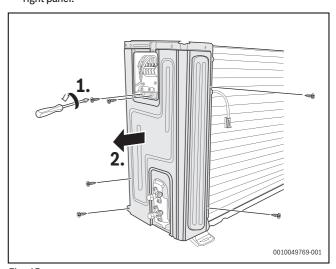


Fig. 45

7.1.3 CL2000 70 E

- ► Turn off the air conditioner and the power breaker.
- ► Remove the screw of the big handle and then remove the big handle (1 screw).

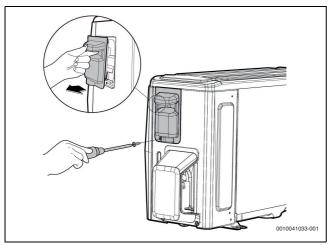


Fig. 46

► Remove the screws of the top cover and then remove the top cover [1] (4 screws). One of the screws is located underneath the big handle.

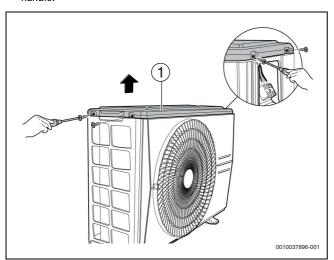


Fig. 47

[1] Top cover

► Remove the screws of the front panel [1] and then remove the front panel (7 screws for the on/off models and 9 screws for the inverter models).

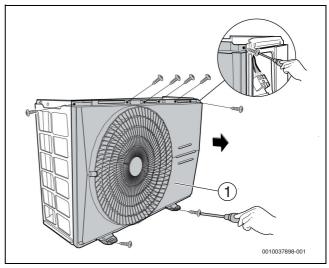


Fig. 48

- [1] Front panel
- ► Remove the screws of the right panel [1] (6 screws) and then remove the right panel.

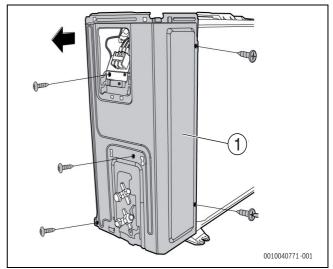


Fig. 49

[1] Right panel

7.2 Electrical Parts

NOTICE

Risk of static discharge.

Static charges can destroy sensitive electronics parts.

► Wear antistatic gloves.

Disassemble panel plate (\rightarrow page 29) before disassembling electrical parts.

CL2000 26 E, CL2000 35 E

► Remove the screws and unfix the hooks, then open the electronic control box cover.

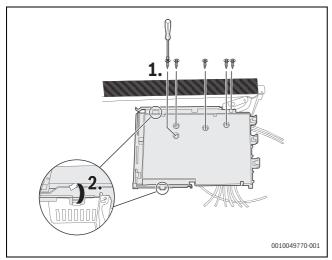


Fig. 50

The electronic control box cover cannot be removed, so the voltage between P and N cannot be measured.

CL2000 53 E, CL2000 70 E

► Disconnect the connector for compressor and release the ground wire (1 screw).

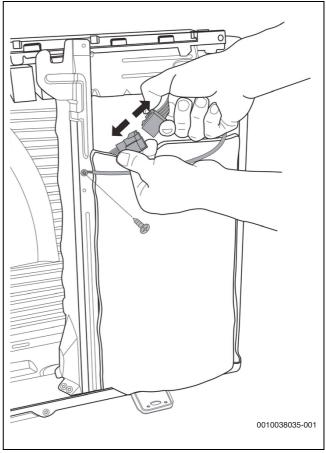


Fig. 51

- ▶ Pull out the wires from electrical supporting plate and turn over the electronic control assembly.
- ► Remove the electronic control box assembly.

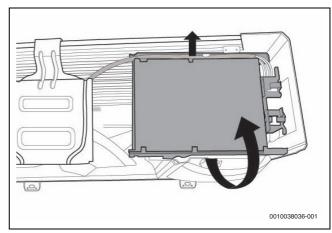


Fig. 52

The electronic control box cover cannot be removed, so the voltage between P and N cannot be measured.

7.3 Fan and fan motor

i

Remove the panel plate (\rightarrow page 29) before disassembling the fan.

- ► Remove the nut securing the fan with a spanner.
- ▶ Remove the fan.

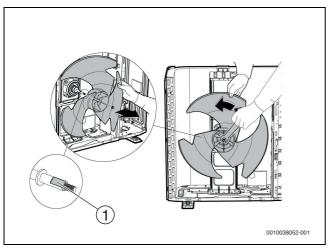


Fig. 53

[1] D-cut

- ▶ Remove the connection of the fan motor on the PCB (→ page 33).
- ► Remove the fixing screws of the fan motor (4 screws).
- ► Remove the fan motor.

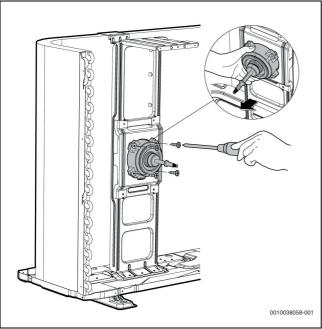


Fig. 54

7.4 Sound blanket

Remove the panel plate (→ page 29) before disassembling the sound blanket

▶ Remove the sound blanket (side [2] and top [1]).

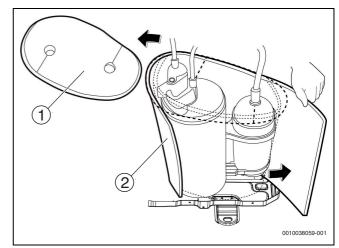


Fig. 55

- [1] Sound Blanket (top)
- [2] Sound Blanket (side)

7.5 Four-way valve

<u>/i\</u>

WARNING

Refrigerant leakage

► Evacuate the system and confirm that there is no refrigerant left in the system before removing the four-way valve.

Remove the panel plate (\rightarrow page 29) and disconnect the four way valve on the PCB (\rightarrow page 33) before disassembling the four-way valve.

- Heat up the brazed parts and then detach the four-way valve and the pipe.
- ► Remove the four-way valve assembly with pliers.

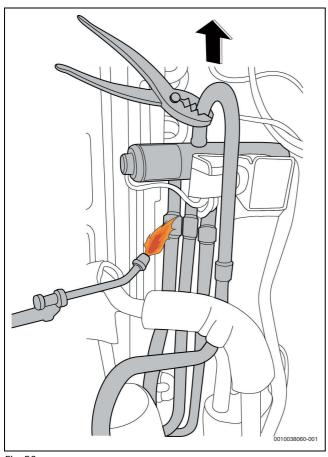


Fig. 56

7.6 Compressor

$\hat{}$

WARNING

Refrigerant leakage

► Evacuate the system and confirm that there is no refrigerant left in the system before removing the compressor.

Remove the panel plate (\rightarrow page 29) and disconnect the compressor on the PCB (\rightarrow page 33) before disassembling the compressor.

Remove the flange nut of terminal cover [1] and remove the terminal cover.

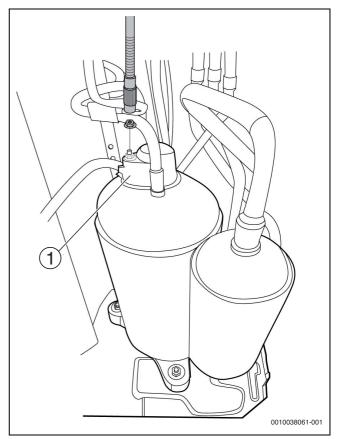


Fig. 57

[1] Terminal Cover

▶ Disconnect the connectors.

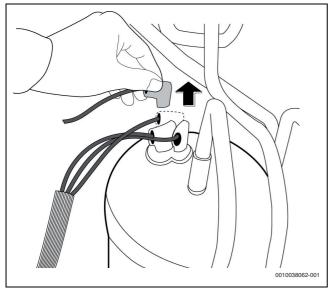


Fig. 58

► Remove the hex nuts and washers securing the compressor, located on the bottom plate.

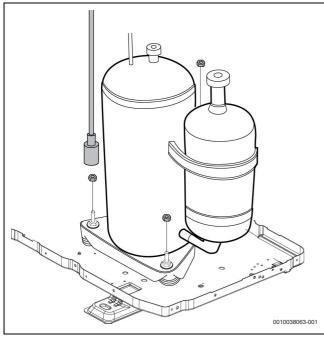


Fig. 59

► Heat up the brazed parts and then remove the discharge pipe [1] and the suction pipe [2].

▶ Lift the compressor from the base pan assembly with pliers.

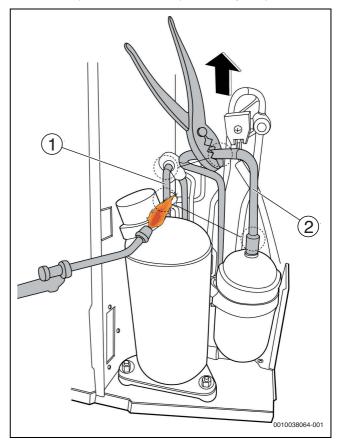


Fig. 60

- [1] Discharge Pipe
- [2] Suction Pipe

8 Diagnosis and troubleshooting

<u>/i\</u>

WARNING

- ▶ All electrical work must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation (all national, local and other laws, standards, codes, rules, regulations and other legislation that apply in a given situation).
- ► Power-off all units before connecting or disconnecting any connections or wiring. Otherwise electric shock may occur, leading to damage to components, physical injury or death.

NOTICE

Risk of static discharge.

Static charges can destroy sensitive electronics parts.

► Wear antistatic gloves.

Test the voltage between P and N on the back of main PCB with multimeter. If the voltage is lower than $36\,V$, the capacitors are fully discharged.

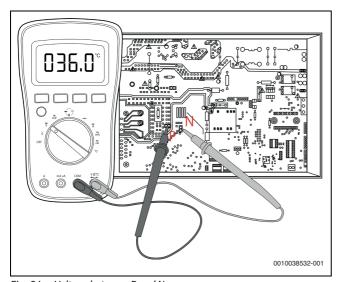


Fig. 61 Voltage between P and N

8.1 Error codes

If a fault occurs during operation, a fault code appears in the display of the indoor unit (e.g. EH 02) or in the parameter information inquiry (\rightarrow page 39).

The display board may show a garbled code or a code undefined by the service manual. For error codes not listed here:

▶ Ensure that this code is not a temperature reading.

If no error code is shown:

- ► Test the unit using the remote control.
- ▶ If the unit does not respond to the remote, replace the PCB.
- ▶ If the unit responds, replace the display board.

Display	Error Information
EH 00	Faulty parameter in the EEPROM of the indoor unit
EH OA	
EL 01	Indoor / outdoor unit communication error
EH 02	Zero-crossing signal detection error (for some models)
EH 03	The indoor fan speed is operating outside of the normal range
EC 51	Outdoor unit EEPROM parameter error (for some models)
EC 52	Condenser coil temperature sensor T3 is in open circuit or has short circuited
EC 53	Outdoor room temperature sensor T4 is in open circuit or has short circuited
EC 54	Compressor discharge temperature sensor TP is in open circuit or has short circuited
EC 56	Evaporator coil outlet temperature sensor T2B is in open circuit or has short circuited (for Multi-split only)
EH 60	Indoor room temperature sensor T1 is in open circuit or has short circuited
EH 61	Evaporator coil temperature sensor T2 is in open circuit or has short circuited
EC 07	The outdoor fan speed is operating outside of the normal range (for some models)
EH 0b	Indoor PCB/display board communication error (for some models)
EL 0C	Refrigerant leak detected
PC 00	Fault at IPM module or IGBT over-current protection
PC 01	Over voltage or over low voltage protection
PC 02	High temperature protection of IPM module or high pressure protection
PC03	Low pressure protection (for some models)
PC 04	Inverter compressor drive error
PC 08	Protection against current overload (for some models)
	Conflicting operating mode of indoor units; operating mode of indoor units and outdoor unit must correspond.

Table 17 Error codes for indoor units

There are two LED lights (red and green) welded in the main board of the outdoor unit. After starting the unit, the LED will show different actions when encountering different problems.

No.	Problem	LED (green)	LED (red)
1	Standby normally	ON	OFF
2	Operate normally	OFF	ON
3	Compressor driven chip EEPROM parameter error	ON	FLASH
4	IPM malfunction or IGBT over-strong current protection	FLASH	OFF
5	Over voltage or too low voltage protection	ON	ON
6	Inverter compressor drive error	OFF	FLASH
7	Inverter compressor drive error	FLASH	LIGHT
8	Communication error between outdoor main chip and compressor driven chip	FLASH	FLASH

Table 18 Error codes for outdoor units (for some models, depending on the outdoor unit)

8.2 Parameter information inquiry by remote control

To enter the information inquiry status, complete the following procedure within ten seconds:

- ▶ Press LED (or DO NOT DISTURB) 3 times.
- ► Press SWING (or AIR DIRECTION) 3 times.
- ► Press and hold ON and Fan buttons for 7 seconds. You will hear beeps for two seconds, which means the unit goes into parameter checking mode.

To read the different parameters:

- ► Use the LED (or DO NOT DISTURB) and SWING (or AIR DIRECTION) buttons to cycle through information displayed.
- Pressing LED (or DO NOT DISTURB) will display the next code in the sequence.
- ► Pressing SWING (or AIR DIRECTION) will show the previous.

The following table shows information codes. The screen displays this code for two seconds, then the information for 25 seconds.

Displa	yed code and explanation	Displayed value	Meaning	Additional information
T1	Room temperature			All displayed temperatures use
T2	Indoor coil temperature			actual values.
T3	Outdoor coil temperature		-25,-24,-23,-22,-21,-20-19—	All temperatures are displayed
T4	Ambient temperature		99100,101,109110,111,1191	in °C regardless of remote used.
ТВ	Outlet temperature of indoor coil	_	20,121,129130,131,139140, 141,149150,151,159	• T1, T2, T3, T4, and T2B display ranges from -25 to 70
TP	Discharge temperature	-1F,-1E,-1d,-1c,-1b,-1A-19—		°C. TP display ranges from -20
TH	Suction temperature	99A0,A1,A9b0,b1,b9c0,c		to 130 °C.
FT	Targeted frequency	1,c9d0,d1,d9E0,E1,E9 F0,F1,F9		The frequency display ranges from 0 to 159 HZ.
FR	Actual frequency			If the actual values exceed or fall short of the defined range, the values closest to the maximum and minimum values will be displayed.
IF	Indoor fan speed		OFF	N/A
OF	Outdoor fan speed	01,2,3,4 14-FF	Low speed, Medium speed, High speed, Turbo. Actual fan speed is equal to the display value converted to decimal value and multiplied by 10. This is measured in RPM.	Used for some large capacitymotors. Used for some small capacitymotors. The display value is 14-FF (hexadecimal). The corresponding fan speed ranges from 200 to 2550 RPM.
LA	EXV opening angle	opening angle 0-FF Actual EXV opening value is equative display value converted to decimal value and then multiplied 2.		-
СТ	Compressor continuous running time	0-FF	0-255 minutes	If the actual value exceeds or falls short of the defined range, the value closest to the maximum and minimum will be displayed.
ST	Causes of compressor stop	0-99	For a detailed explanation, contact technical support.	-

Displaye	d code and explanation	Displayed value	Meaning	Additional information
A0			-	_
A1				
b0				
b1				
b2		0-FF2-285-205-25		
b3				
b4				
b5				
b6	Reserved			
dL				
Ac				
Uo				
Td				
dA				
d5				
dT				

Table 19 Information Inquiry

8.3 Error diagnosis and troubleshooting without error code

8.3.1 Remote maintenance

When troubles occur, please check the following points with customers before field maintenance.

Problem	Туре	Possible causes of trouble	Test method / remedy
Unit will not start	Electrical	Power failure	► Test voltage.
		The main power tripped	► Close the power switch.
		Loose connections	► Inspect connections - tighten.
		Faulty transformer	► Change the transformer.
The power switch is on but fan does not	Electrical	Loose connections	► Inspect connections - tighten.
run		Faulty transformer	► Change the transformer.
		The voltage is too high or too low	► Test voltage.
	Other	Interference from cell phone towers and remote boosters	 Reconnect the power or press ON/OFF button on remote control to restart operation.
The temperature on the display board	Electrical	The remote control is powered off	► Replace the battery of the remote control.
cannot be set		Broken remote control	► Replace the remote control.
Unit is on but the airflow is not cold (hot)	Electrical	Set temperature is too high/low	Adjust the set temperature.
	Refrigerant	Ambient temperature is too high/low	► Turn on the unit later.
		Fan mode is active	► Change to cooling/heating mode.
Unit runs, but shortly stops	Electrical	The voltage is too high or too low	► Test voltage.
	Refrigerant	Set temperature is too high/low	► Adjust the set temperature.
		Ambient temperature is too high/low	► Turn on the unit later.
The unit starts up and stops frequently	Electrical	The voltage is too high or too low	► Test voltage.
	Refrigerant	Ambient temperature is too high/low	► Turn on the unit later.
		Frosting and defrosting frequently	► Turn on the unit later.
	Other	The air inlet or outlet of either unit is blocked	► Remove the obstacles.
Unit runs continuously but insufficient	Refrigerant	Dirty air filter	► Clean or replace filter.
cooling (heating)		Dirty condenser fins	► Clean condenser fins.
		Set temperature is too high/low	► Adjust the set temperature.
		Ambient temperature is too high/low.	► Turn on the unit later.
		Noise reduction function is activated (optional function)	► Turn off noise reduction function.
	Other	Heavy load condition	► Check heat load.
		Bad air proof	► Close all the windows and doors.
		The air inlet or outlet of either unit is blocked	► Remove the obstacles.
Unit is noisy	Other	Loosen hold down bolts and / or screws	► Tighten bolts or screws.
		Shipping plates remain attached	► Remove them.
-			

Table 20 Remote maintenance

8.3.2 Field maintenance

Problem	Туре	Possible causes of trouble	Test method / remedy
Unit will not start	Electrical	Power failure	► Test voltage
		Blown fuse or varistor	► Inspect fuse type & size
		Loose connections	► Inspect connections - tighten
		Shorted or broken wires	► Test circuits with tester
		Safety device opens	► Test continuity of safety device
		Faulty transformer	► Check control circuit with tester
Compressor will not start but fan runs	Refrigerant	Compressor stuck	► Replace the compressor
	Electrical	Shorted or broken wires	► Test circuits with tester
		Faulty thermostat / room temperature sensor	► Test continuity of thermostat / sensor & wiring
		Shorted or open capacitor	► Check capacitor with tester
		Faulty magnetic contactor for compressor	► Test continuity of coil & contacts
		Shorted or grounded compressor	► Check resistance with multimeter
Compressor and condenser (outdoor)	Electrical	Shorted or broken wires	► Test circuits with tester
fan will not start		Faulty thermostat / room temperature sensor	► Test continuity of thermostat / sensor & wiring
		Faulty magnetic contactor for compressor	► Test continuity of coil & contacts
Evaporator (indoor) fan will not start	Electrical	Shorted or broken wires	► Test circuits with tester
, , , , , , , , , , , , , , , , , , , ,		Shorted or open capacitor	► Check capacitor with tester
		Faulty magnetic contactor for fan	► Test continuity of coil & contacts
		Shorted or grounded fan motor	► Check resistance with multimeter
Condenser (Outdoor) fan will not start	Electrical	Shorted or broken wires	► Test circuits with tester
oonaonoon (oataoor) tan mii nocotare		Faulty thermostat / room temperature sensor	► Test continuity of thermostat / sensor & wiring
		Shorted or open capacitor	► Check capacitor with tester
		Faulty magnetic contactor for fan	Test continuity of coil & contacts
		Shorted or grounded fan motor	► Check resistance with multimeter
Unit runs, but shortly stops	Refrigerant	Shortage of refrigerant	► Leak test
officialis, but shortly stops	Henrigerani	Restricted liquid line	Replace restricted part
		Overcharge of refrigerant	► Reduce charged refrigerant volume
		Dirty or partially blocked condenser	► Clean condenser or remove obstacle
		Capillary tube closed completely	► Replace capillary
	Electrical	Faulty magnetic contactor for compressor	► Test continuity of coil & contacts
	Electrical	• •	,
Compressor short eveling due to	Defrigerent	Low voltage	► Test voltage
Compressor short cycling due to overload	Refrigerant	Shortage of refrigerant	► Leak test
overload		Overcharge of refrigerant	► Reduce charged refrigerant volume
	Ela atada al	Dirty or partially blocked condenser	Clean condenser or remove obstacle
	Electrical	Faulty magnetic contactor for compressor	► Test continuity of coil & contacts
re to entre	D (;)	Low voltage	► Test voltage
High discharge pressure	Refrigerant	Overcharge of refrigerant	Change charged refrigerant volume
		Dirty or partially blocked condenser	Clean condenser or remove obstacle
		Air or incompressible gas in refrigerant cycle	► Purge, evacuate and recharge
		Limitation of the condensation air flow	Remove obstruction to air flow
		High temperature condensing medium	► Remove obstruction in air or water flow
		Insufficient condensing medium	► Remove obstruction in air or water flow
Low discharge pressure	Refrigerant	Shortage of refrigerant	► Leak test
		Inefficient compressor	► Test compressor efficiency
High suction pressure	Refrigerant	Overcharge of refrigerant	► Change charged refrigerant volume
		Inefficient compressor	► Test compressor efficiency
		Temperature sensor is not installed correctly	► Install the sensor properly
	Other	Heavy load condition	► Check heat load

Problem	Туре	Possible causes of trouble	Test method / remedy
Low suction pressure	Refrigerant	Shortage of refrigerant	► Leak test
		Restricted liquid line	► Replace restricted part
		Dirty air filter	► Clean or replace
		Dirty evaporator coil	► Clean coil
		Insufficient air through evaporator coil	► Check fan
		Capillary tube closed completely	► Replace capillary
Unit runs continuously but insufficient	Refrigerant	Shortage of refrigerant	► Leak test
cooling		Restricted liquid line	► Replace restricted part
		Dirty air filter	► Clean or replace
		Dirty evaporator coil	► Clean coil
		Insufficient air through evaporator coil	► Check fan
		Dirty or partially blocked condenser	► Clean condenser or remove obstacle
		Air or incompressible gas in refrigerant cycle	► Purge, evacuate and recharge
		Short cycling of condensing air	► Remove obstruction to air flow
		Inefficient compressor	► Test compressor efficiency
	Other	Heavy load condition	► Check heat load
		Poor choices of capacity	 Choose AC of lager capacity or add the number of AC
Too cool	Electrical	Faulty thermostat / room temperature sensor	► Test continuity of thermostat / sensor & wiring
		Wrong setting place of temperature sensor	► Place the temperature sensor at the central of the air inlet grille
Compressor is noisy	Refrigerant	Overcharge of refrigerant	► Reduce charged refrigerant volume
		Broken compressor internal parts	► Replace compressor
	Other	Loosen hold down bolts and / or screws	► Tighten bolts or screws
		Shipping plates remain attached	► Remove them
		Contact of piping with other piping or external plate	 Rectify piping so as not to contact each other or with external plate
Horizontal louver can not revolve	Electrical	Loose connections	► Inspect connections - tighten
		Shorted or broken wires	► Test circuits with tester
		Faulty stepping motor	► Replace the stepping motor

Table 21 Field Maintenance

8.4 Check Procedures

8.4.1 Before checking

CAUTION

Risk of injury from electric shock!

Electricity remains in capacitors even when the power supply is off.

- ► Ensure the capacitors are fully discharged before troubleshooting
- Be sure to turn off all power supplies or disconnect all wires to avoid electric shock.

CAUTION

Danger of burns!

During operation the compressor becomes hot.

 Operate after compressor and coil have returned to normal temperature in order to avoid injury.

8.4.2 Temperature Sensor Check

- ▶ Disconnect the temperature sensor from PCB (→ indoor and outdoor unit disassembly on page 24 and 29).
- ▶ Measure the resistance value of the sensor using a multi-meter.

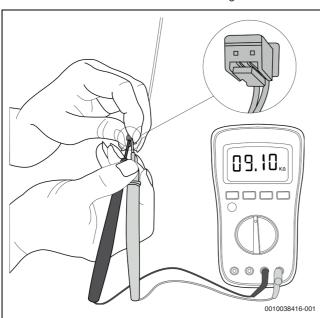


Fig. 62 Temperature Sensor Check

► Check corresponding temperature sensor resistance value table (→ chapter 9, p. 66.

The picture and the value are only for reference, actual condition and specific value may vary.

8.4.3 Compressor check

- ▶ Disconnect the compressor power cord from outdoor PCB (→ outdoor unit disassembly on page 29).
- ► Measure the resistance value of each winding using a multi-meter.

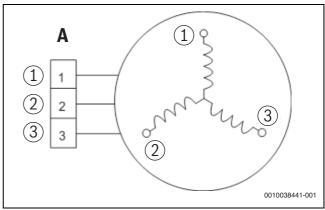


Fig. 63 Compressor Check

- [1] Red
- [2] Black
- [3] White
- ► Check the resistance value of each winding in the following table.

Compressor type	Blue-Red Blue-Black Red-Black
KSK89D53UEZ	2.35 Ω
KSK89D29UEZD	1.99 Ω
KSN98D22UFZ	1.57 Ω
KSK103D33UEZ3	2.02 Ω
KSM135D23UFZ	1.72 Ω
KSN140D21UFZ	1.28 Ω
KTF235D22UMT	0.75 Ω
KSK103D33UEZ3(YJ)	2.13 Ω
KTM240D57UMT	0.62 Ω
KSN140D58UFZ	1.86 Ω
KTM240D43UKT	1.03 Ω
KSN98D64UFZ3	2.70 Ω
ASN140D35TFZ	0.83 Ω
ATF235D22TMT	0.75 Ω

Table 22 Resistance Value of each winding

Fig. 64 Compressor Check

8.4.4 IPM Continuity Check

- ► Turn off outdoor unit and disconnect power supply.
- ► Discharge electrolytic capacitors and ensure all energy-storage unit has been discharged.
- ▶ Disassemble outdoor PCB or disassemble IPM board.
- Measure the resistance value between P and U(V, W, N); U(V, W) and N.

	Digital tester	Resistance value
(+)Red	(-)Black	
Р	N	∞
	U	(Several MΩ)
	V	
	W	
U	N	∞
V	-	(Several MΩ)
W	_	
_	-	

Table 23

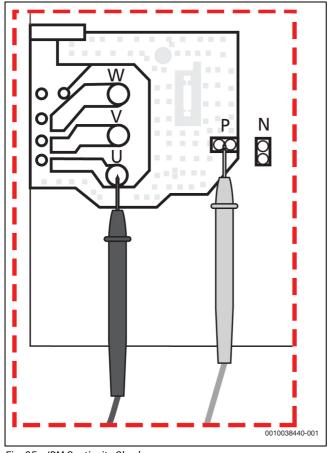


Fig. 65 IPM Continuity Check

The picture and the value are only for reference, actual condition and specific value may vary.

8.4.5 Indoor AC fan motor check

- ▶ Power off and disconnect the fan motor power cord from the PCB.
- Measure the resistance value of each winding by using the multimeter. The normal value is displayed as follows.

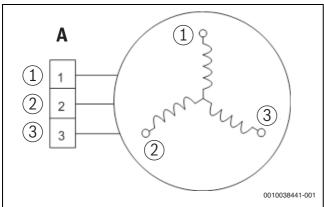

Model	YKFG- 13-4- 38LYKFG -13-4- 38L-4	YKFG- 15-4- 28-1		YKFG- 20-4-5- 11	YKFG- 20-4-5- 19	YKFG- 25-4-6-	YKFG-28- 4-3- 7YKFG- 28-4-3- 14	YKFG- 28-4-6- 5	YKFG-45- 4-13	YKFG-45- 4-22 YKFG-45- 4-22-13	YKFG- 60-4-2- 6	YKFG- 60-4-1	YKFG- 20-4-5- 21	YKFG- 20-4- 123	YKFG- 28-4-46
Brand	Welling	Welling	Welling	Welling	Welling	Welling	Welling	Welling	Dongfang	Welling	Welling	Welling	Welling	Welling	Welling
Black - Red main	345Ω	75Ω	269Ω	388Ω	444Ω	287Ω	231Ω	183.6Ω	125.2Ω	168Ω	96Ω	68Ω	450Ω	267Ω	210Ω
White - Black AUX	348Ω	150Ω	224Ω	360Ω	470Ω	409Ω	414Ω	206Ω	83.8Ω	141Ω	96Ω	53Ω	442Ω	266Ω	288Ω

Table 24

- ▶ Power on and set the unit running in fan mode at high fan speed.
- ► After running for 15 seconds, measure the voltage of pin1 and pin2.

If the value of the voltage is less than 100V (208~240V power supply) or 50V (115V power supply), the PCB must have an issue and needs to be replaced.

- [1] Red
- [2] Black
- [3] White

8.5 Troubleshooting by Error Code

8.5.1 Indoor units mode conflict (only multi-split)

When using multi-split air conditioners, all operation modes are possible, but with the following peculiarities:

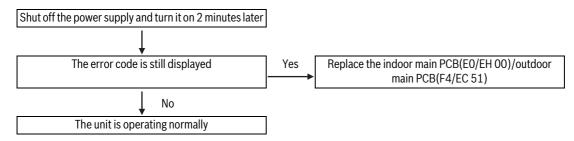
If you operate more than one indoor unit, indoor units may go into standby due to an operation mode conflict. An operation mode conflict occurs when at least one indoor unit is in heating mode and at the same time at least one indoor unit is in another operation mode (e.g. cooling mode). Heating mode always has priority. All indoor units that are not in heating mode will go into standby because of the operation mode conflict.

Indoor units with operation mode conflict show "--" in the display or the operation light flashes and the timer light is on. For more information, see the technical documentation of the indoor units.

Avoiding the operation mode conflict:

• All indoor units are in heating mode or cooling/fan only mode.

8.5.2 E0/EH 00/EH 0A/F4/EC 51: Outdoor unit EEPROM parameter error or Compressor driven chip EEPROM parameter error


Digital output

• E0/EH 00/EH 0A/F4/EC 51

Description

 Indoor or outdoor PCB main chip does not receive feedback from EEPROM chip or compressor driven chip.

Procedure

A read-only memory whose contents can be erased and reprogrammed using a pulsed voltage. The location of the EEPROM chip on the indoor and outdoor PCB is as shown below.

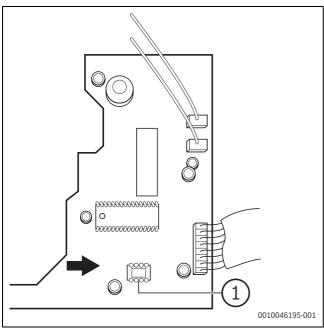


Fig. 66 EEPROM

[1] EEPROM chip

Recommended parts to prepare

- · Indoor PCB
- Outdoor PCB

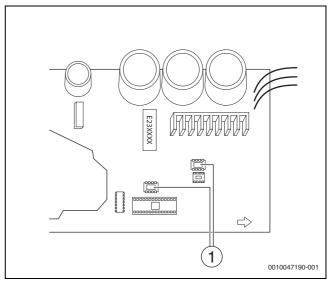


Fig. 67 EEPROM

[1] EEPROM chip

For certain models, the outdoor PCB can not be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

Troubleshooting and repair of compressor driven chip EEPROM parameter error and communication error between outdoor main chip and compressor driven chip are the same as F4/EC 51.

8.5.3 E1/EL 01: Indoor and outdoor unit communication error

Digital output

• E1/EL 01

Description

· Indoor unit can not communicate with outdoor unit.

Recommended parts to prepare

- Indoor PCB
- Outdoor PCB
- · Short-circuited component

Additional information

- Use a multimeter to test the DC voltage between 2(N) and S port of outdoor unit. The red pin of multimeter connects with 2(N) port while the black pin is for S port.
- When AC is normal running, the voltage will move alternately from positive to negative values.
- If the outdoor unit has malfunction, the voltage has always a positive value
- While if the indoor unit has malfunction, the voltage is fixed or has a value very close to zero.

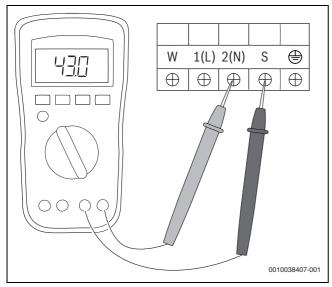
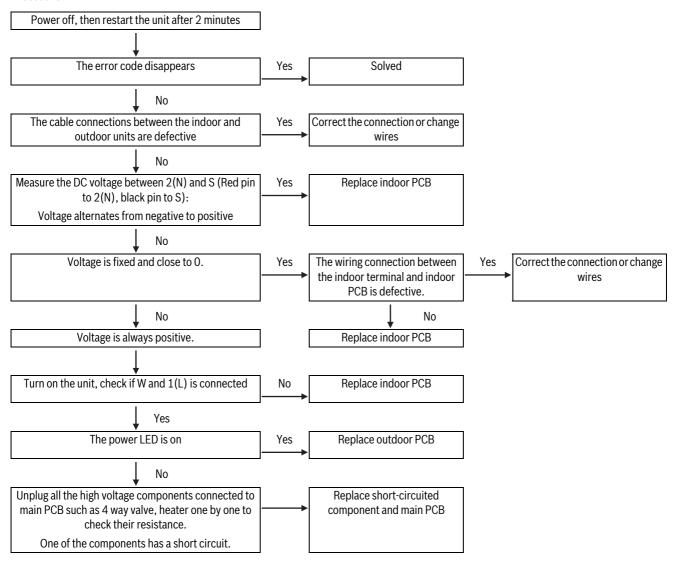


Fig. 68


- Use a multimeter to test the resistance of the reactor. Be sure that the capacitor is not connected during measurement.
- The normal value should be around zero ohm. Otherwise, the reactor may have malfunction.

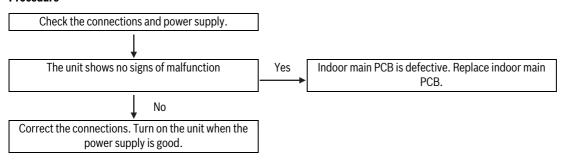
The picture and the value are only for reference, actual condition and specific value may vary.

Procedure

8.5.4 E2/EH 02: Zero crossing detection error

Digital output

• E2/EH 02


Description

• When PCB does not receive zero crossing signal feedback for 4 minutes or the zero crossing signal time interval is abnormal.

Recommended parts to prepare

· Connection wires

Procedure

PCB

Additional information

 $\,$ E2/EH 02 zero crossing detection error is only valid for the unit with AC fan motor, for other models, this error is invalid.

8.5.5 E3/EH 03/F5/EC 07: The fan speed is operating outside of normal range

Digital output

• E3/EH 03/F5/EC 07

Description

 When indoor/outdoor fan speed keeps too low or too high for a certain time, the LED displays the failure code and the AC turns off.

Recommended parts to prepare

- · Connection wires
- · Fan assembly
- Fan motor
- PCB

Additional information

DC Fan Motor(control chip is in fan motor)

► Power on and when the unit is in standby, measure the voltage of pin1-pin3, pin4-pin3 in fan motor connector.

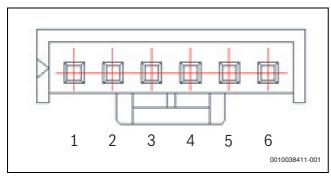
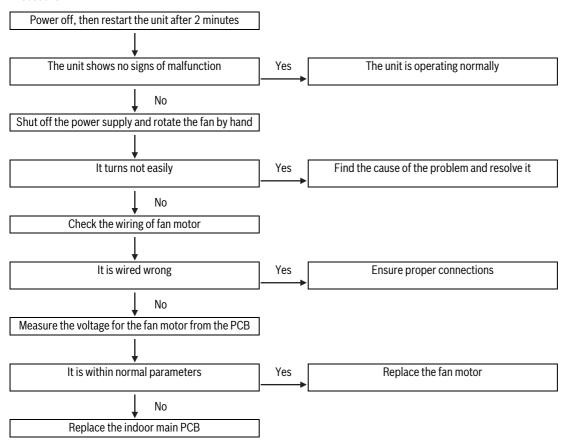


Fig. 69 Fan motor connector

No.	Color	Signal	Voltage 220 - 240V
1	Red	Vs/Vm	280 V - 380 V
2	-	-	-
3	Black	GND	0 V
4	White	Vcc	14 V - 17.5 V
5	Yellow	Vsp	0 V - 5.6 V
6	Blue	FG	14 V - 17.5 V


Table 25 DC motor voltage input and output (220-240V~)

If the measured voltage does not fit the values in the table, the PCB has problems and needs to be replaced.

Procedure

Outdoor DC fan motor

- ► Release the UVW connector.
- Measure the resistance of U-V, U-W, V-W. If the resistance is not equal to each other, the fan motor must has problems and need to be replaced. Otherwise the PCB must has problems and need to be replaced.

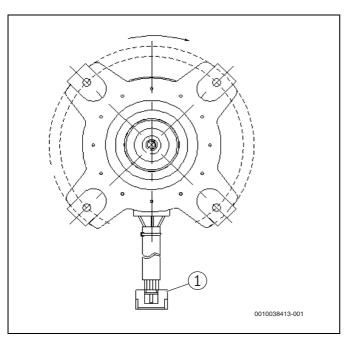


Fig. 70 Fan motor connector (control chip is in outdoor PCB)

[1] UVW connector

i

Indoor AC fan motor

 Check procedure for indoor AC fan motor check (Indoor AC fan motor check, Page 47)

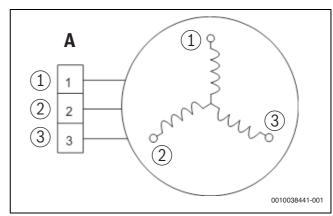


Fig. 71 Compressor check

- [1] Red
- [2] Black
- [3] White

8.5.6 E4/EH 60/E5/EH 61/F1/EC 53/F2/EC 52/F3/EC 54/F6/EC56: Open circuit or short circuit of outdoor temperature sensor

Digital output

• E4/EH 60/E5/EH 61/F1/EC 53/F2/EC 52/F3/EC 54/F6/EC56

Description

 If the sampling voltage is lower than 0.06 V or higher than 4.94 V, the LED displays the failure code.

Recommended parts to prepare

- · Connection wires
- Sensors
- PCB

Additional information

For certain models, outdoor PCB could not be removed separately. In this case, the outdoor electric control box should be replaced as a whole. For certain models, outdoor unit uses combination sensor, T3,T4 and TP are the same of sensor. The picture and the value are only for reference, actual appearance and value may vary.

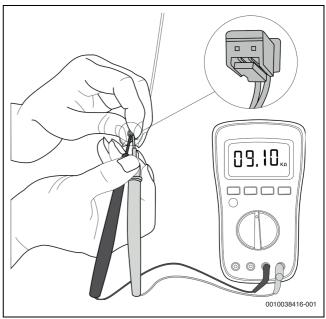
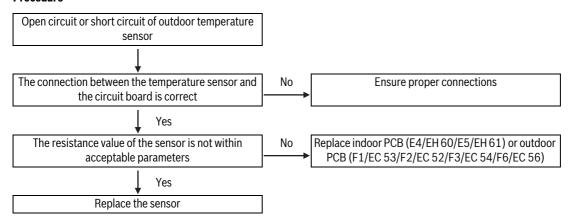



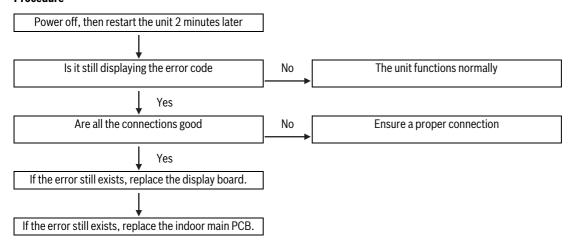
Fig. 72

Procedure

8.5.7 E7/EH Ob: Indoor PCB/display board communication error

Digital output

• E7/EH 0b


Description

• Indoor PCB does not receive feedback from the display board.

Recommended parts to prepare

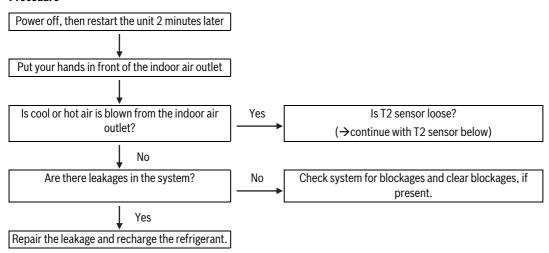
- · Connection wire
- · Indoor PCB
- · Display board

Procedure

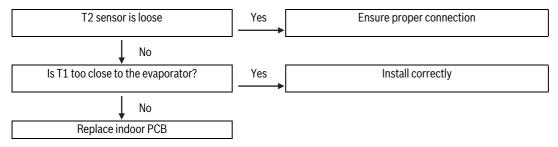
8.5.8 EC/EL OC: Refrigerant leakage detection

Digital output

• EC/EL OC


Description

Define the evaporator coil temperature T2 of the compressor just starts running as $\rm T_{cool}.$ In the beginning 5 minutes after the compressor starts up, if T2 < $\rm T_{cool}$ -1°C(1.8°F) does not keep continuous 4 seconds and compressor running frequency higher than 50Hz does not keep for 3 minutes, and this situation happens 3 times, the LED displays the failure code and the AC turns off.


Recommended parts to prepare

- Indoor PCB
- T2 sensor
- · Additional refrigerant

Procedure

T2 sensor

8.5.9 FO/PC 08: Current overload protection

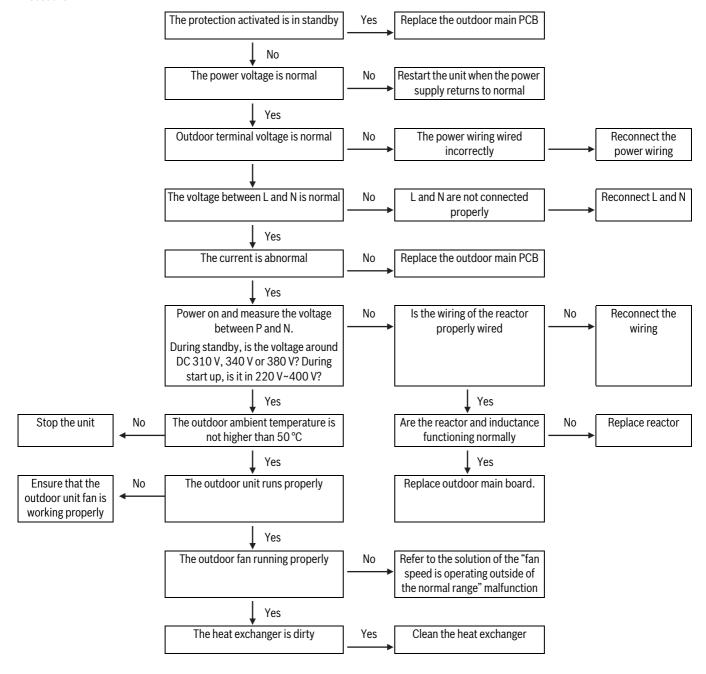
Digital output

• F0/PC 08

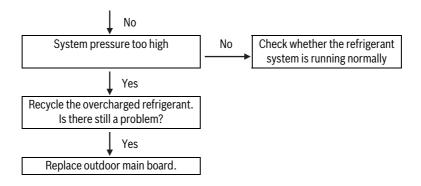
Description

 An abnormal current rise is detected by checking the specified current detection circuit.

Recommended parts to prepare


- · Connection wires
- · Reactor
- Outdoor fan
- Outdoor PCB

Additional information



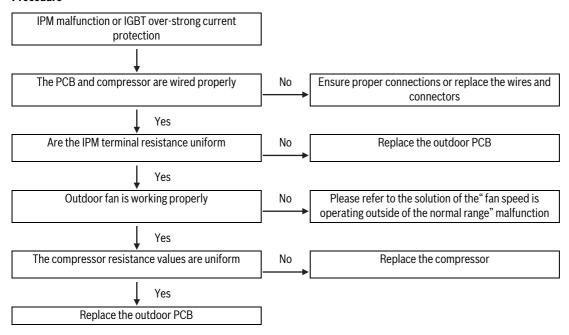
For certain models, outdoor PCB could not be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

Procedure

8.5.10 PO/PC 00: IPM malfunction or IGBT over-strong current protection

Digital output

• P0/PC 00


Description

 When the voltage signal the IPM sends to the compressor drive chip is abnormal, the LED displays the failure code and the AC turns off.

Recommended parts to prepare

- · Connection wires
- IPM module board
- · Outdoor fan assembly
- · Compressor
- Outdoor PCB

Procedure

For certain models, the outdoor PCB cannot be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

8.5.11 P1/PC 01: Over voltage or too low voltage protection

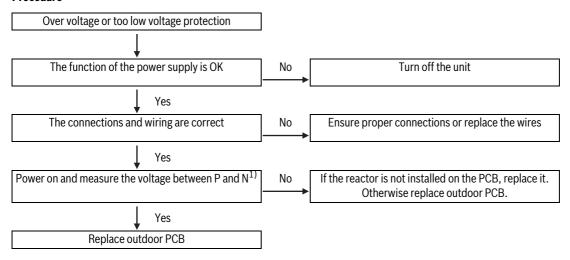
Digital output

• P1/PC01

Description

 Abnormal increases or decreases in voltage are detected by checking the specified voltage detection circuit.

Recommended parts to prepare


- · Power supply wires
- IPM module board
- PCB
- Reactor

Additional information

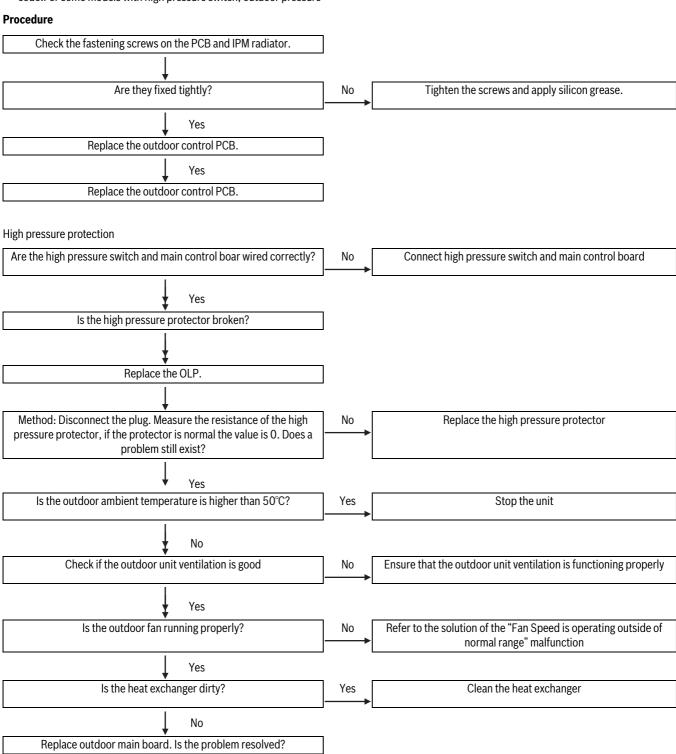
For certain models, outdoor PCB could not be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

Procedure

1) While the unit is in standby, is the voltage between P and N is around DC 310 V, 340 V or 380 V. When start up the unit, is it in 220 V ~ 400 V.

8.5.12 P2/PC 02: High temperature protection of IPM module or high pressure protection

Digital output


P2/PC 02

Description

 For some models with overload protection, If the sampling voltage is not 5V, the LED will display the failure. If the temperature of IPM module is higher than a certain value, the LED displays the failure code. For some models with high pressure switch, outdoor pressure switch cut off the system because high pressure is higher than 4.4 MPa, the LED displays the failure code.

Recommended parts to prepare

- · Connection wires
- Outdoor PCB
- IPM module board
- · High pressure protector
- System blockages

Check whether the refrigerant system is functioning properly

For certain models, the outdoor PCB can not be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

8.5.13 P4/PC 04: Inverter compressor drive error

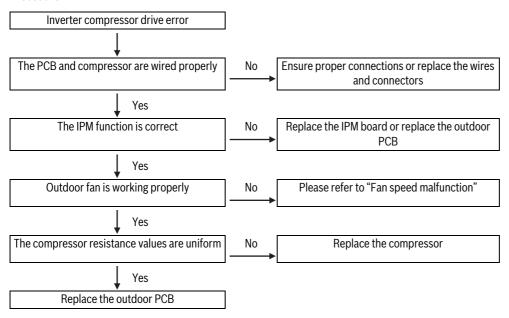
Digital output

P4/PC 04

Description

 An abnormal inverter compressor drive is detected by a special detection circuit, including communication signal detection, voltage detection, compressor rotation speed signal detection and so on.

Recommended parts to prepare


- · Connection wires
- · IPM module board
- Outdoor fan assembly
- · Compressor
- Outdoor PCB

Additional information

For certain models, outdoor PCB could not be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

Procedure

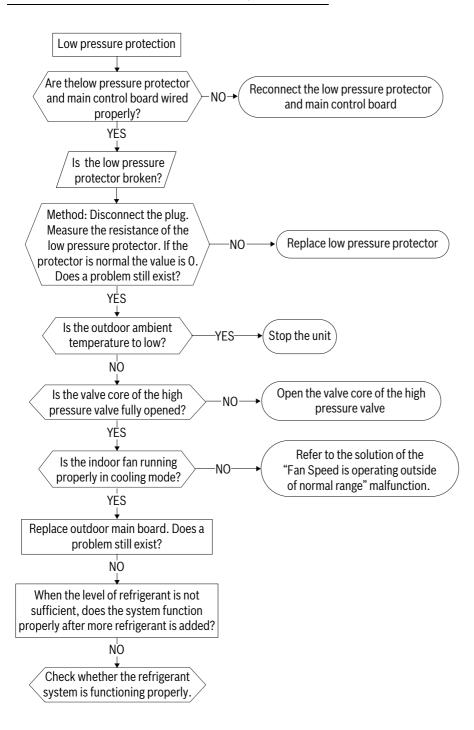
8.5.14 PC 03: Low pressure protection

Digital output

• PC 03

Description

Outdoor pressure switch cut off the system because low pressure is lower than 0.13 MPa, the LED displays the failure code.


Procedure

For certain models, outdoor PCB could not be removed separately. In this case, the outdoor electric control box should be replaced as a whole.

Recommended parts to prepare

- · Connection wires
- · Outdoor PCB
- · Low pressure protector
- Refrigerant

9 Appendix

9.1 Temperature Sensor Resistance Value Table for T1,T2,T3 and T4

Temperature [°C]	Resistance [k Ω]
-20	115.3
-18	101.5
-16	89.59
-14	79.31
-12	70.17
-10	62.28
-8	56.37
-6	49.32
-4	44.00
-2	39.82
0	35.20
2	31.56
4	28.35
6	25.50
8	22.57
10	20.72
12	18.72
14	16.93
16	15.34
18	13.92
20	12.64
22	11.50
24	10.47
26	9.551
28	8.720
30	7.971
32	7.295
34	6.684
36	6.131
38	5.630
40	5.175
42	4.763
44	4.387
46	4.046
48	3.735
50	3.451
52	3.192
54	2.959
56	2.738
58	2.540
60	2.358
62	2.191
64	2.037
66	1.896
68	1.766
70	1.647
72	1.537
74	1.435
76	1.341
78	1.254
80	1.174
82	1.100
02	1.100

illu 14	
Temperature [°C]	Resistance [kΩ]
84	1.031
86	0.9668
88	0.9075
90	0.8525
92	0.8013
94	0.7537
96	0.7094
98	0.6682
100	0.6297
102	0.5959
104	0.5604
106	0.5291
108	0.4999
110	0.4726
112	0.4470
114	0.4230
116	0.4006
118	0.3796
120	0.3598
122	0.3413
124	0.3239
126	0.3075
128	0.2922
130	0.2777
132	0.2641
134	0.2513
136	0.2392
138	0.2278

Table 26

9.2 Temperature Sensor Resistance Value Table for TP (T5)

Tomorotoro [90]	Decistance [kO]
Temperature [°C]	Resistance [kΩ] 542.7
-18	483.0
-16	430.5
-14	384.3
-12	343.6
-10	307.7
-8	275.9
-6	247.8
-4	222.8
-2	200.7
0	180.9
2	163.3
4	147.6
6	133.5
8	121.0
10	109.8
12	99.69
14	90.66
16	82.54
18	75.24
20	68.66
22	62.73
24	57.37
26	52.53
28	48.14
30	44.17
32	40.57
34	
	37.30
36	34.32
38	31.62
40	29.15
42	26.90
44	24.85
46	22.89
48	21.26
50	19.69
52	18.26
54	16.94
56	15.73
58	14.62
60	13.59
62	12.65
64	11.79
66	10.99
68	10.25
70	9.569
72	8.980
74	8.358
76	7.820
78	7.321
80	6.859
82	6.430
84	6.033
86	5.663
00	3.003

Temperature [°C]	Resistance [kΩ]
88	5.320
90	5
92	4.703
94	4.426
96	4.167
98	3.927
100	3.702
102	3.492
104	3.296
106	3.113
108	2.941
110	2.781
112	2.630
114	2.489
116	2.357
118	2.233
120	2.117
122	2.007
124	1.905
126	1.808
128	1.717
130	1.632

Table 27

9.3 Complain Record Form

Request No.: Installation Date:		Date: Service Date:		
Customer Information			1	
Name		Telephone No.		
Home Address		'		
Email				
Product Information				
Indoor Unit Model		Outdoor Unit Model		
Serial No. of indoor unit		Serial No. of outdoor unit		
Working Mode	☐ Cooling ☐ Heating	g 🗆 🗆 Fan only 🗆	□ □ Dry	
Setting temperature		Fan speed	□ Turbo	□ Auto
, ·	°C	,	☐ High ☐ Low	☐ Medium
Temperature of air inlet		Temperature of air outlet		
	°C			℃
Installation / Condition Inform	ation			
Indoor temperature	°C	Indoor humidity		%RH
Outdoor temperature	°C	Outdoor humidity		%RH
Length of Connecting pipe		Pipe diameter	Gas pipe:	Liquid pipe:
Length of Wiring		wire diameter		
System Running Pressure				
,	MPa or	Bar		
Room size (L*W*H)				
Photo of Installation of Indoor unit (Photo #1)		Photo of Installation of Outdoor unit (Photo #2)		
			1	
Failure Description				
Error Code of Indoor unit:		Code of Outdoor PCB:		
Unit does not start		Less cooling or heating		
Remote control does not work		Unit starts but stops shortly		
Indoor display shows nothing		High noise		
No cooling or heating at all		High vibration		
	<u> </u>			

Parameter information inquiry						
Parameter	Definition	Display value	Display value meaning			
T1	Room temperature					
T2	Indoor coil temperature					
Т3	Outdoor coil temperature					
T4	Ambient temperature					
TP	Discharge temperature					
FT	Targeted Frequency					
Fr	Actual Frequency					
dl	Compressor current					
Uo	Outdoor AC voltage					
Sn	Indoor capacity test					
Pr	Outdoor fan speed					
Lr	EXV opening steps					
ir	Indoor fan speed					
HU	Indoor humidity					
TT	Adjusted setting temperature					
оТ	New calculated frequency					
DT	Reserved					
iF	Reserved					
nA	Reserved					
	Reserved					
Approval from Manufacturer						
☐ Approved						
☐ More Proof ned	eded					
□ Rejected						

10 Environmental protection and disposal

Environmental protection is a fundamental corporate strategy of the Bosch Group.

The quality of our products, their economy and environmental safety are all of equal importance to us and all environmental protection legislation and regulations are strictly observed.

We use the best possible technology and materials for protecting the environment taking account of economic considerations.

Packaging

Where packaging is concerned, we participate in country-specific recycling processes that ensure optimum recycling.

All of our packaging materials are environmentally compatible and can be recycled.

Used appliances

Used appliances contain valuable materials that can be recycled. The various assemblies can be easily dismantled. Synthetic materials are marked accordingly. Assemblies can therefore be sorted by composition and passed on for recycling or disposal.

Old electrical and electronic appliances

X

This symbol means that the product must not be disposed of with other waste, and instead must be taken to the waste collection points for treatment, collection, recycling and disposal.

The symbol is valid in countries where waste electrical and electronic equipment regulations apply, e.g. "(UK) Waste Electrical and Electronic Equipment Regulations 2013 (as amended)". These regulations define the framework for the return and recycling of old electronic appliances that apply in each country.

As electronic devices may contain hazardous substances, it needs to be recycled responsibly in order to minimize any potential harm to the environment and human health. Furthermore, recycling of electronic scrap helps preserve natural resources.

For additional information on the environmentally compatible disposal of old electrical and electronic appliances, please contact the relevant local authorities, your household waste disposal service or the retailer where you purchased the product.

You can find more information here: www.weee.bosch-thermotechnology.com/

Batteries

Batteries must not be disposed together with your household waste. Used batteries must be disposed of in local collection systems.

Refrigerant R32

The appliance contains fluorinated gas R32 (global warming potential 675¹⁾) mild combustibility and low toxicity (A2L or A2).

Contained quantity is indicated on the equipment outdoor unit name label.

Refrigerant is hazardous to the environment and must be collected and disposed of separately.

11 Data Protection Notice

We, Bosch Thermotechnology Ltd., Cotswold Way, Warndon, Worcester WR4 9SW, United Kingdom process product and installation information, technical and connection data, communication data, product registration and client history data to provide product functionality (art. 6 (1) sentence 1 (b) GDPR

/ UK GDPR), to fulfil our duty of product surveillance and for product safety and security reasons (art. 6 (1) sentence 1 (f) GDPR / UK GDPR), to safeguard our rights in connection with warranty and product registration questions (art. 6 (1) sentence 1 (f) GDPR / UK GDPR) and to analyze the distribution of our products and to provide individualized information and offers related to the product (art. 6 (1) sentence 1 (f) GDPR / UK GDPR). To provide services such as sales and marketing services, contract management, payment handling, programming, data hosting and hotline services we can commission and transfer data to external service providers and/or Bosch affiliated enterprises. In some cases, but only if appropriate data protection is ensured, personal data might be transferred to recipients located outside of the European Economic Area and the United Kingdom. Further information are provided on request. You can contact our Data Protection Officer under: Data Protection Officer, Information Security and Privacy (C/ISP), Robert Bosch GmbH, Postfach 30 02 20, 70442 Stuttgart, GERMANY.

You have the right to object, on grounds relating to your particular situation or where personal data are processed for direct marketing purposes, at any time to processing of your personal data which is based on art. 6 (1) sentence 1 (f) GDPR / UK GDPR. To exercise your rights, please contact us via **privacy.ttgb@bosch.com** To find further information, please follow the QR-Code.

70

Based on ANNEX I of REGULATION (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014.

